Stochastic homogenization of viscous superquadratic Hamilton-Jacobi equations in dynamic random environment

被引:7
|
作者
Jing, Wenjia [1 ]
Souganidis, Panagiotis E. [1 ]
Tran, Hung V. [2 ]
机构
[1] Univ Chicago, Dept Math, 5734 S Univ Ave, Chicago, IL 60637 USA
[2] Univ Wisconsin, Dept Math, Van Vleck Hall,480 Lincoln Dr, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Stochastic homogenization; Hamilton-Jacobi equations; Viscosity solutions; Dynamic random environment; Time-dependent Hamiltonian; Convex analysis; VISCOSITY SOLUTIONS; TIME;
D O I
10.1186/s40687-016-0090-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the qualitative homogenization of second-order Hamilton-Jacobi equations in space-time stationary ergodic random environments. Assuming that the Hamiltonian is convex and superquadratic in the momentum variable (gradient), we establish a homogenization result and characterize the effective Hamiltonian for arbitrary (possibly degenerate) elliptic diffusion matrices. The result extends previous work that required uniform ellipticity and space-time homogeneity for the diffusion.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Large time behavior of solutions of viscous Hamilton-Jacobi equations with superquadratic Hamiltonian
    Tchamba, Thierry Tabet
    ASYMPTOTIC ANALYSIS, 2010, 66 (3-4) : 161 - 186
  • [22] Large time behavior of solutions of viscous hamilton-jacobi equations with superquadratic hamiltonian
    Laboratoire de Mathématiques et Physique Théorique, UMR CNRS 6083, Université François Rabelais, Tours, France
    不详
    Asymptotic Anal, 3-4 (161-186):
  • [23] Stochastic homogenization of quasilinear Hamilton-Jacobi equations and geometric motions
    Armstrong, Scott
    Cardaliaguet, Pierre
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (04) : 797 - 864
  • [24] Homogenization of a class of one-dimensional nonconvex viscous Hamilton-Jacobi equations with random potential
    Kosygina, Elena
    Yilmaz, Atilla
    Zeitouni, Ofer
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (01) : 32 - 56
  • [25] Homogenization of pathwise Hamilton-Jacobi equations
    Seeger, Benjamin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 : 1 - 31
  • [26] OPTIMAL RATE OF CONVERGENCE IN PERIODIC HOMOGENIZATION OF VISCOUS HAMILTON-JACOBI EQUATIONS
    Qian, Jianliang
    Sprekeler, Timo
    Tran, Hung V.
    Yu, Yifeng
    Multiscale Modeling and Simulation, 2024, 22 (04): : 1558 - 1584
  • [27] HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS
    Oberman, Adam M.
    Takei, Ryo
    Vladimirsky, Alexander
    MULTISCALE MODELING & SIMULATION, 2009, 8 (01): : 269 - 295
  • [28] Criticality of viscous Hamilton-Jacobi equations and stochastic ergodic control
    Ichihara, Naoyuki
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (03): : 368 - 390
  • [29] Stochastic Homogenization of Level-Set Convex Hamilton-Jacobi Equations
    Armstrong, Scott N.
    Souganidis, Panagiotis E.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (15) : 3420 - 3449
  • [30] Stochastic homogenization of Hamilton-Jacobi and degenerate Bellman equations in unbounded environments
    Armstrong, Scott N.
    Souganidis, Panagiotis E.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (05): : 460 - 504