Construction of three-dimensional stationary Euler flows from pseudo-advected vorticity equations

被引:6
|
作者
Nishiyama, T [1 ]
机构
[1] Fukuoka Inst Technol, Dept Engn Mech, Fukuoka 8110295, Japan
关键词
stationary Euler flows; vorticity equation; Beltrami flow;
D O I
10.1098/rspa.2003.1132
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some vorticity equations with pseudo-advection terms are proposed. They yield three-dimensional stationary Euler flows at t = infinity. In particular, one of them generates the Beltrami flow.
引用
收藏
页码:2393 / 2398
页数:6
相关论文
共 50 条
  • [41] On the regularity of three-dimensional rotating Euler-Boussinesq equations
    Babin, A
    Mahalov, A
    Nicolaenko, B
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1999, 9 (07): : 1089 - 1121
  • [42] Poisson structure of the three-dimensional Euler equations in Fourier space
    Dullin, H. R.
    Meiss, J. D.
    Worthington, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (36)
  • [43] Regularity of Euler equations for a class of three-dimensional initial data
    Mahalov, A
    Nicolaenko, B
    Bardos, C
    Golse, F
    Trends in Partial Differential Equations of Mathematical Physics, 2005, 61 : 161 - 185
  • [44] A unified coordinate system for solving the three-dimensional Euler equations
    Hui, WH
    Kudriakov, S
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (01) : 235 - 260
  • [45] Hyperbolicity and optimal coordinates for the three-dimensional supersonic Euler equations
    Hong Kong Univ of Science and, Technology, Kowloon, Hong Kong
    SIAM J Appl Math, 4 (893-928):
  • [46] LU implicit multigrid algorithm for the three-dimensional Euler equations
    Yokota, Jeffrey W.
    Caughey, D.A.
    AIAA journal, 1988, 26 (09): : 1061 - 1069
  • [47] On the free boundary problem of three-dimensional incompressible Euler equations
    Zhang, Ping
    Mang, Zhifei
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (07) : 877 - 940
  • [48] A Characteristic Mapping Method for the three-dimensional incompressible Euler equations
    Yin, Xi -Yuan
    Schneider, Kai
    Nave, Jean-Christophe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 477
  • [49] The suppressible property of the solution for three-dimensional Euler equations with damping
    Yang, Xiongfeng
    Wang, Weike
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2007, 8 (01) : 53 - 61
  • [50] Leapfrogging vortex rings for the three-dimensional incompressible Euler equations
    Davila, Juan
    Pino, Manuel del
    Musso, Monica
    Wei, Juncheng
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (10) : 3843 - 3957