Some remarks on Schanuel's conjecture

被引:4
|
作者
Bianconi, R [1 ]
机构
[1] USP, IME, BR-05315970 Sao Paulo, SP, Brazil
关键词
03C65; 11J81; 11U07; 11U09; S03C20;
D O I
10.1016/S0168-0072(00)00039-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Schanuel's Conjecture is the statement: if x(1),...,x(n) is an element of C are linearly independent over Q, then the transcendence degree of Q(x(1),...,x(n), exp(x(1)),...,exp(x(n))) over Q is at least n. Here we prove that this is true if instead we take infinitesimal elements from any ultrapower of C, and in fact from any nonarchimedean model of the theory of the expansion of the field of real numbers by restricted analytic functions. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:15 / 18
页数:4
相关论文
共 50 条