Schanuel's Conjecture is the statement: if x(1),...,x(n) is an element of C are linearly independent over Q, then the transcendence degree of Q(x(1),...,x(n), exp(x(1)),...,exp(x(n))) over Q is at least n. Here we prove that this is true if instead we take infinitesimal elements from any ultrapower of C, and in fact from any nonarchimedean model of the theory of the expansion of the field of real numbers by restricted analytic functions. (C) 2001 Elsevier Science B.V. All rights reserved.
机构:
Trencin Univ Alexander Dubcek Trencin, Fac Ind Technol Puchov, I Krasku 491-30, Puchov 02001, SlovakiaTrencin Univ Alexander Dubcek Trencin, Fac Ind Technol Puchov, I Krasku 491-30, Puchov 02001, Slovakia
机构:
Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech RepublicUniv Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
Trojovska, Eva
Trojovsky, Pavel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech RepublicUniv Hradec Kralove, Fac Sci, Dept Math, Hradec Kralove 50003, Czech Republic
机构:
Inst Math Jussieu Paris Rive Gauche, Equipe Theorie Nombres, UMR CNRS 7586, Paris, FranceInst Math Jussieu Paris Rive Gauche, Equipe Theorie Nombres, UMR CNRS 7586, Paris, France
Philippon, Patrice
Saha, Biswajyoti
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hyderabad, Sch Math & Stat, Prof CR Rao Rd, Hyderabad 500046, IndiaInst Math Jussieu Paris Rive Gauche, Equipe Theorie Nombres, UMR CNRS 7586, Paris, France
Saha, Biswajyoti
Saha, Ekata
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Stat & Math Unit, 203 Barrackpore Trunk Rd, Kolkata 700108, IndiaInst Math Jussieu Paris Rive Gauche, Equipe Theorie Nombres, UMR CNRS 7586, Paris, France