On Bayesian inference for the Extended Plackett-Luce model

被引:0
|
作者
Johnson, Stephen R. [1 ]
Henderson, Daniel A. [1 ]
Boys, Richard J. [1 ]
机构
[1] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne, Tyne & Wear, England
来源
BAYESIAN ANALYSIS | 2022年 / 17卷 / 02期
关键词
Markov chain Monte Carlo; MC; 3; permutations; predictive inference; CHAIN MONTE-CARLO;
D O I
10.1214/21-BA1258
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The analysis of rank ordered data has a long history in the statistical literature across a diverse range of applications. In this paper we consider the Extended Plackett-Luce model that induces a flexible (discrete) distribution over permutations. The parameter space of this distribution is a combination of potentially high-dimensional discrete and continuous components and this presents challenges for parameter interpretability and also posterior computation. Particular emphasis is placed on the interpretation of the parameters in terms of observable quantities and we propose a general framework for preserving the mode of the prior predictive distribution. Posterior sampling is achieved using an effective simulation based approach that does not require imposing restrictions on the parameter space. Working in the Bayesian framework permits a natural representation of the posterior predictive distribution and we draw on this distribution to make probabilistic inferences and also to identify potential lack of model fit. The flexibility of the Extended Plackett-Luce model along with the effectiveness of the proposed sampling scheme are demonstrated using several simulation studies and real data examples. rank ordered data.
引用
下载
收藏
页码:465 / 490
页数:26
相关论文
共 50 条
  • [41] A Bayesian Inference Model for Metamemory
    Hu, Xiao
    Zheng, Jun
    Su, Ningxin
    Fan, Tian
    Yang, Chunliang
    Yin, Yue
    Fleming, Stephen M.
    Luo, Liang
    PSYCHOLOGICAL REVIEW, 2021, 128 (05) : 824 - 855
  • [42] Bayesian inference for the gravity model
    Ranjan, Priya
    Tobias, Justin L.
    JOURNAL OF APPLIED ECONOMETRICS, 2007, 22 (04) : 817 - 838
  • [43] Bayesian Network Structure Inference with an Hierarchical Bayesian Model
    Werhli, Adriano Velasque
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2010, 2010, 6404 : 92 - 101
  • [44] Extended Bayesian inference method for evaluating pipe failure probability in corrosion rate fluctuation model
    Dept of Mech. Eng., Univ. of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
    Zairyo, 2008, 4 (401-407):
  • [45] Bayesian Inference by Symbolic Model Checking
    Salmani, Bahare
    Katoen, Joost-Pieter
    QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2020), 2020, 12289 : 115 - 133
  • [46] Bayesian inference for the information gain model
    Stringer, Sven
    Borsboom, Denny
    Wagenmakers, Eric-Jan
    BEHAVIOR RESEARCH METHODS, 2011, 43 (02) : 297 - 309
  • [47] Model Checking After Bayesian Inference
    Pozzi, Matteo
    Zonta, Daniele
    RISK AND RELIABILITY ANALYSIS: THEORY AND APPLICATIONS: IN HONOR OF PROF. ARMEN DER KIUREGHIAN, 2017, : 317 - 339
  • [48] BAYESIAN-INFERENCE ON MIXED MODEL
    ROUANET, H
    BIOMETRICS, 1976, 32 (01) : 202 - 203
  • [49] Bayesian inference in a sample selection model
    van Hasselt, Martijn
    JOURNAL OF ECONOMETRICS, 2011, 165 (02) : 221 - 232
  • [50] GENERAL BAYESIAN MODEL FOR HIERARCHICAL INFERENCE
    KELLY, CW
    BARCLAY, S
    ORGANIZATIONAL BEHAVIOR AND HUMAN PERFORMANCE, 1973, 10 (03): : 388 - 403