Robust transmission of Ince-Gaussian vector beams through scattering medium

被引:4
|
作者
Li, Zhuang [1 ]
Wang, Jiming [1 ]
Sun, Zhe [1 ]
Wu, Tong [2 ]
Sheng, Wei [1 ]
He, Chongjun [2 ]
Yang, Yannan [1 ]
Liu, Youwen [1 ]
Lu, Yuangang [2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Dept Appl Phys, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Astronaut, Dept Astronaut Optoelect Informat, Nanjing 211106, Peoples R China
来源
OPTIK | 2022年 / 257卷
关键词
Polarization; Ince-Gaussian vector beams; Scattering medium; LIGHT-SCATTERING; MONTE-CARLO; PROPAGATION; PARTICLES; GENERATION;
D O I
10.1016/j.ijleo.2022.168766
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Vectorial structure light through scattering media is attracting significant attention due to the scattering resistance and structural stability. Here we explore experimentally the propagation properties of the Ince-Gaussian (IG) vector beams through a scattering media. By using computer generated digital holography and superposition of orthogonal polarized components, we propose a vector light generator for creating of the IG vector beams. The generated third-order and fourth order IG vector beams propagate through a suspension of mono-disperse polystyrene beads with different concentrations. Full stokes parameters are measured and the experimental results show that high-order vectorial structure beams present better structural transmission stability through the scattering medium than the scalar Gaussian beams. The quantum-like correlations between the polarization and the spatial amplitude components contributes to the robustness through complex medium.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Structurally Invariant Higher-Order Ince-Gaussian Beams and Their Expansions into Hermite-Gaussian or Laguerre-Gaussian Beams
    Abramochkin, Eugeny G.
    Kotlyar, Victor V.
    Kovalev, Alexey A.
    APPLIED SCIENCES-BASEL, 2024, 14 (05):
  • [42] Generation of helical Ince-Gaussian beams:: beam-shaping with a liquid crystal display
    Davis, Jeffrey A.
    Bentley, Joel B.
    Bandres, Miguel A.
    Gutierrez-Vega, Julio C.
    LASER BEAM SHAPING VII, 2006, 6290
  • [43] Generation of vortex beams from lasers with controlled Hermite- and Ince-Gaussian modes
    Ohtomo, Takayuki
    Chu, Shu-Chun
    Otsuka, Kenju
    OPTICS EXPRESS, 2008, 16 (07) : 5082 - 5094
  • [44] Ince-Gaussian beams in the generalized Lorenz-Mie theory through finite series Laguerre-Gaussian beam shape coefficients
    Votto, Luiz Felipe
    Chafiq, Abdelghani
    Gouesbet, Gerard
    Ambrosio, Leonardo Andre
    Belafhal, Abdelmajid
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2023, 302
  • [45] Propagation of Ince-Gaussian beams in strongly nonlocal nonlinear media using paraxial group transformation
    Keshavarz, Alireza
    Honarasa, Gholamreza
    JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2014, 23 (03)
  • [46] Generation of Ince-Gaussian beams in highly efficient, nanosecond Cr, Nd:YAG microchip lasers
    Dong, J.
    Ma, J.
    Ren, Y. Y.
    Xu, G. Z.
    Kaminskii, A. A.
    LASER PHYSICS LETTERS, 2013, 10 (08)
  • [47] Enhanced entanglement from Ince-Gaussian pump beams in spontaneous parametric down-conversion
    Baghdasaryan, Baghdasar
    Fritzsche, Stephan
    PHYSICAL REVIEW A, 2020, 102 (05)
  • [48] Generation of multiple vortex beams with specified vortex number from lasers with controlled Ince-Gaussian modes
    Chu, Shu-Chun
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2008, 47 (07) : 5297 - 5303
  • [49] Constant-Envelope Modulation of Ince-Gaussian Beams for High Bandwidth Underwater Wireless Optical Communications
    Robertson, Evan
    Pires, Danilo G. G.
    Dai, Kunjian
    Free, Justin
    Kimmel, Kaitlyn
    Litchinitser, Natalia
    Miller, J. Keith
    Johnson, Eric G. G.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2023, 41 (16) : 5209 - 5216
  • [50] Controllable transmission of vector beams in dichroic medium
    Li, Yun-Ke
    Wang, Jin-Wen
    Yang, Xin
    Chen, Yun
    Chen, Xi-Yuan
    Cao, Ming-Tao
    Wei, Dong
    Gao, Hong
    Li, Fu-Li
    CHINESE PHYSICS B, 2019, 28 (01)