Quantum Dots in Graphene Nanoribbons

被引:101
|
作者
Wang, Shiyong [1 ]
Kharche, Neerav [2 ]
Girao, Eduardo Costa [3 ]
Feng, Xinliang [4 ]
Muellen, Klaus [5 ]
Meunier, Vincent [2 ]
Fasel, Roman [1 ,6 ]
Ruffieux, Pascal [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Uberlandstr 129, CH-8600 Dubendorf, Switzerland
[2] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[3] Univ Fed Piaui, Dept Fis, BR-64049550 Teresina, Piaui, Brazil
[4] Tech Univ Dresden, Dept Chem & Food Chem, Mommsenstr 4, D-01062 Dresden, Germany
[5] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[6] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
Graphene quantum dot; graphene nanoribbon; scanning tunneling spectroscopy; density functional theory; screening; ON-SURFACE SYNTHESIS; QUASI-PARTICLE; BAND-GAP; RESONANCES; MICROSCOPY;
D O I
10.1021/acs.nanolett.7b01244
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene quantum dots (GQDs) hold great promise for applications in electronics, optoelectronics, and bioelectronics, but the fabrication of widely tunable GQDs has remained elusive. Here, we report the fabrication of atomically precise GQDs consisting of low-bandgap N = 14 armchair graphene nanoribbon (AGNR) segments that are achieved through edge fusion of N = 7 AGNRs. The so-formed intraribbon GQDs reveal deterministically defined, atomically sharp interfaces between wide and narrow AGNR segments and host a pair of low-lying interface states. Scanning tunneling microscopy/spectroscopy measurements complemented by extensive simulations reveal that their energy splitting depends exponentially on the length of the central narrow bandgap segment. This allows tuning of the fundamental gap of the GQDs over 1 order of magnitude within a few nanometers length range. These results are expected to pave the way for the development of widely tunable intraribbon GQD-based devices.
引用
收藏
页码:4277 / 4283
页数:7
相关论文
共 50 条
  • [21] Quantum correlations in chiral graphene nanoribbons
    Tan, Xiao-Dong
    Koop, Cornelie
    Liao, Xiao-Ping
    Sun, Litao
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (43)
  • [22] Quantum discord in zigzag graphene nanoribbons
    Tan, Xiao-Dong
    Song, Ya Feng
    Shi, Yu
    Hou, Ru
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2025, 165
  • [23] Quantum dissonance in chiral graphene nanoribbons
    Tan, Xiao-Dong
    Kang, Xiu-Bao
    Zhao, Li-Min
    Zhang, Jun-Ji
    Hao, Hao-Shan
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (20)
  • [24] Graphene Quantum Dots
    Bacon, Mitchell
    Bradley, Siobhan J.
    Nann, Thomas
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2014, 31 (04) : 415 - 428
  • [25] Quantum dots in graphene
    Silvestrov, P. G.
    Efetov, K. B.
    PHYSICAL REVIEW LETTERS, 2007, 98 (01)
  • [26] Fabrication of graphene oxide quantum dots (GOQDs) and graphene quantum dots (GQDs)
    Fan, Tianju
    Zeng, Wenjing
    Zhang, Dianbo
    Yuan, Chunqiu
    Tang, Wei
    Tong, Songzhao
    Mo, Shenbin
    Zhao, Chunyan
    Liu, Yidong
    Min, Yong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [27] Electrochemical Method To Prepare Graphene Quantum Dots and Graphene Oxide Quantum Dots
    Ahirwar, Satyaprakash
    Mallick, Sudhanshu
    Bahadur, Dhirendra
    ACS OMEGA, 2017, 2 (11): : 8343 - 8353
  • [28] Quantum confinement in graphene quantum dots
    Huang, Zhongkai
    Qu, Jinfeng
    Peng, Xiangyang
    Liu, Wenliang
    Zhang, Kaiwang
    Wei, Xiaolin
    Zhong, Jianxin
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2014, 8 (05): : 436 - 440
  • [29] Tunable Quantum Dots from Atomically Precise Graphene Nanoribbons Using a Multi-Gate Architecture
    Zhang, Jian
    Braun, Oliver
    Barin, Gabriela Borin
    Sangtarash, Sara
    Overbeck, Jan
    Darawish, Rimah
    Stiefel, Michael
    Furrer, Roman
    Olziersky, Antonis
    Muellen, Klaus
    Shorubalko, Ivan
    Daaoub, Abdalghani H. S.
    Ruffieux, Pascal
    Fasel, Roman
    Sadeghi, Hatef
    Perrin, Mickael L.
    Calame, Michel
    ADVANCED ELECTRONIC MATERIALS, 2023, 9 (04)
  • [30] Graphene quantum dots, graphene oxide, carbon quantum dots and graphite nanocrystals in coals
    Dong, Yongqiang
    Lin, Jianpeng
    Chen, Yingmei
    Fu, Fengfu
    Chi, Yuwu
    Chen, Guonan
    NANOSCALE, 2014, 6 (13) : 7410 - 7415