LIMIT DISTRIBUTIONS FOR DIFFERENT FORMS OF FOUR-STATE QUANTUM WALKS ON A TWO-DIMENSIONAL LATTICE

被引:0
|
作者
Machida, Takuya [1 ]
Chandrashekar, C. M. [2 ]
Konno, Norio [3 ]
Busch, Thomas [4 ]
机构
[1] Meiji Univ, Japan Soc Promot Sci, Nakano Ku, Nakano Campus,4-21-1 Nakano, Tokyo 1648525, Japan
[2] Inst Math Sci, Opt & Quantum Informat Grp, Madras 600113, Tamil Nadu, India
[3] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Hodogaya, Yokohama 2408501, Japan
[4] Grad Univ, Okinawa Inst Sci & Technol, Quantum Syst Unit, Okinawa, Japan
基金
日本学术振兴会;
关键词
discrete-time quantum walk; 2-dimensional lattice; limit distribution;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Long-time limit distributions are key quantities for understanding the asymptotic dynamics of quantum walks, and they are known for most forms of one-dimensional quantum walks using two-state coin systems. For two-dimensional quantum walks using a four-state coin system, however, the only known limit distribution is for a walk using a parameterized Grover coin operation and analytical complexities have been a major obstacle for obtaining long-time limit distributions for other coins. In this work however, we present two new types of long-time limit distributions for walks using different forms of coin-flip operations in a four-state coin system. This opens the road towards understanding the dynamics and asymptotic behaviour for higher state coin system from a mathematical view point.
引用
收藏
页码:1248 / 1258
页数:11
相关论文
共 50 条
  • [21] Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks
    Marquez-Martin, Ivan
    Arnault, Pablo
    Di Molfetta, Giuseppe
    Perez, Armando
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [22] A CENTRAL LIMIT THEOREM FOR TWO-DIMENSIONAL RANDOM WALKS IN A CONE
    Garbit, Rodolphe
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2011, 139 (02): : 271 - 286
  • [23] Equivalent Circuits for Two-Fermion Four-State Quantum Systems
    Civalleri, Pier Paolo
    Gilli, Marco
    Bonnin, Michele
    ISCAS: 2009 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-5, 2009, : 573 - 576
  • [24] Decoherence in two-dimensional quantum random walks with traps
    Gonulol, Meltem
    Aydiner, Ekrem
    Mustecaplioglu, Ozgur E.
    PHYSICAL REVIEW A, 2009, 80 (02):
  • [25] Mixing times in quantum walks on two-dimensional grids
    Marquezino, F. L.
    Portugal, R.
    Abal, G.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [26] Area Distribution of Two-Dimensional Random Walks on a Square Lattice
    Mashkevich, Stefan
    Ouvry, Stephane
    JOURNAL OF STATISTICAL PHYSICS, 2009, 137 (01) : 71 - 78
  • [27] Area Distribution of Two-Dimensional Random Walks on a Square Lattice
    Stefan Mashkevich
    Stéphane Ouvry
    Journal of Statistical Physics, 2009, 137 : 71 - 78
  • [28] Limit distributions of three-state quantum walks: The role of coin eigenstates
    Stefanak, M.
    Bezdekova, I.
    Jex, I.
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [29] TWO-DIMENSIONAL MAGNETOTRANSPORT IN THE EXTREME QUANTUM LIMIT
    TSUI, DC
    STORMER, HL
    GOSSARD, AC
    PHYSICAL REVIEW LETTERS, 1982, 48 (22) : 1559 - 1562
  • [30] CONTINUUM-LIMIT ON A TWO-DIMENSIONAL RANDOM LATTICE
    ESPRIU, D
    GROSS, M
    RAKOW, PEL
    WHEATER, JF
    NUCLEAR PHYSICS B, 1986, 265 (01) : 92 - 112