Front-electrode design for efficient near-field thermophotovoltaics

被引:2
|
作者
Karalis, Aristeidis [1 ]
Joannopoulos, John D. [1 ,2 ]
机构
[1] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
ACTIVE PHOTONIC PLATFORMS XI | 2019年 / 11081卷
关键词
thermophotovoltaics; transparent conducting electrodes; radiative heat transfer; plasmonics; thin films; ENERGY; TRANSPARENT; PERFORMANCE; FILMS; OXIDE;
D O I
10.1117/12.2529736
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The effects of the necessary front electrode in near-field ultrathin resonant thermophotovoltaic cells are analyzed. Absorption inside the transparent conducting electrode limits the power level that can be efficiently converted to electricity and several electrode materials are compared in performance. The assisting grid of metallic fingers suppresses thermal radiation from the emitter in its region across from them, leading to reduced shading losses and wider optimal fingers than usually associated with far-field photovoltaic cells. Promising performances are predicted, reaching 24% at 900K and 48% at 2100K.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Aplanatic near-field optics for efficient light transfer
    Nakar, Doron
    Feuermann, Daniel
    Gordon, Jeffrey M.
    [J]. OPTICAL ENGINEERING, 2006, 45 (03)
  • [42] Micron-sized liquid nitrogen-cooled indium antimonide photovoltaic cell for near-field thermophotovoltaics
    Vaillon, Rodolphe
    Perez, Jean-Philippe
    Lucchesi, Christophe
    Cakiroglu, Dilek
    Chapuis, Pierre-Olivier
    Taliercio, Thierry
    Tournie, Eric
    [J]. OPTICS EXPRESS, 2019, 27 (04) : A11 - A24
  • [43] Distributing the Optical Near-Field for Efficient Field-Enhancements in Nanostructures
    Valev, V. K.
    De Clercq, B.
    Biris, C. G.
    Zheng, X.
    Vandendriessche, S.
    Hojeij, M.
    Denkova, D.
    Jeyaram, Y.
    Panoiu, N. C.
    Ekinci, Y.
    Silhanek, A. V.
    Volskiy, V.
    Vandenbosch, G. A. E.
    Ameloot, M.
    Moshchalkov, V. V.
    Verbiest, T.
    [J]. ADVANCED MATERIALS, 2012, 24 (35) : OP208 - OP215
  • [44] Near-field fluorescence thermometry using highly efficient triple-tapered near-field optical fiber probe
    Fujii, T.
    Taguchi, Y.
    Saiki, T.
    Nagasaka, Y.
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (12):
  • [45] Resolution of near-field to near-field imaging with silver nanolayer
    Stefaniuk, Tomasz
    Wrobel, Piotr
    Borysiuk, Jolanta
    Szoplik, Tomasz
    [J]. METAMATERIALS VIII, 2013, 8771
  • [46] An Efficient Digital CZT Beamforming Design for Near-Field 3-D Sonar Imaging
    Palmese, Maria
    Trucco, Andrea
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2010, 35 (03) : 584 - 594
  • [47] Efficient electromagnetic near-field computation by the multilevel fast multipole method employing mixed near-field/far-field translations
    Tzoulis, A
    Eibert, TF
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005, 4 : 449 - 452
  • [48] Parametric optimum design of a near-field electroluminescent refrigerator
    Liao, Tianjun
    Tao, Chuanyi
    Chen, Xiaohang
    Chen, Jincan
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (32)
  • [49] Dynamic MIMO Architecture Design for Near-Field Communications
    Zhang, Zheng
    Liu, Yuanwei
    Wang, Zhaolin
    Chen, Jian
    Quek, Tony Q.S.
    [J]. IEEE Transactions on Wireless Communications, 2024, 23 (10) : 14669 - 14684
  • [50] Near-field recording head with simple tracking design
    Huang, Der-Ray
    Chao, Zu-Wen
    Wu, Guo-Zua
    Lean, Eric G.
    [J]. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 1999, 38 (3 B): : 1774 - 1776