M3S: a comprehensive model selection for multi-modal single-cell RNA sequencing data

被引:8
|
作者
Zhang, Yu [1 ,2 ]
Wan, Changlin [2 ,3 ]
Wang, Pengcheng [4 ]
Chang, Wennan [2 ,3 ]
Huo, Yan [2 ,5 ]
Chen, Jian [6 ]
Ma, Qin [7 ]
Cao, Sha [2 ,8 ]
Zhang, Chi [2 ,3 ,9 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, MOE Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Peoples R China
[2] Indiana Univ Sch Med, Ctr Computat Biol & Bioinformat, Indianapolis, IN 46202 USA
[3] Purdue Univ, Dept Elect Comp Engn, W Lafayette, IN 47907 USA
[4] Indiana Univ Purdue Univ, Dept Comp Sci, Indianapolis, IN 46202 USA
[5] China Med Univ, Sch Fundamental Sci, Shenyang 110122, Peoples R China
[6] Tongji Univ, Shanghai Pulm Hosp, Sch Med, Shanghai 200082, Peoples R China
[7] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
[8] Indiana Univ Sch Med, Dept Biostat, Indianapolis, IN 46202 USA
[9] Dept Med & Mol Genet, Indianapolis, IN 46202 USA
基金
中国国家自然科学基金;
关键词
Single cell RNA-seq; Multimodality; Differential gene expression analysis; Drop-seq; Left truncated mixture Gaussian;
D O I
10.1186/s12859-019-3243-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Various statistical models have been developed to model the single cell RNA-seq expression profiles, capture its multimodality, and conduct differential gene expression test. However, for expression data generated by different experimental design and platforms, there is currently lack of capability to determine the most proper statistical model. Results: We developed an R package, namely Multi-Modal Model Selection (M3S), for gene-wise selection of the most proper multi-modality statistical model and downstream analysis, useful in a single-cell or large scale bulk tissue transcriptomic data. M3S is featured with (1) gene-wise selection of the most parsimonious model among 11 most commonly utilized ones, that can best fit the expression distribution of the gene, (2) parameter estimation of a selected model, and (3) differential gene expression test based on the selected model. Conclusion: A comprehensive evaluation suggested that M3S can accurately capture the multimodality on simulated and real single cell data. An open source package and is available through GitHub at https://github.com/zy26/M3S.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Splatter: simulation of single-cell RNA sequencing data
    Luke Zappia
    Belinda Phipson
    Alicia Oshlack
    Genome Biology, 18
  • [22] Single-cell multi-modal GAN reveals spatial patterns in single-cell data from triple-negative breast cancer
    Amodio, Matthew
    Youlten, Scott E.
    Venkat, Aarthi
    San Juan, Beatriz P.
    Chaffer, Christine L.
    Krishnaswamy, Smita
    PATTERNS, 2022, 3 (09):
  • [23] Comprehensive generation, visualization, and reporting of quality control metrics for single-cell RNA sequencing data
    Hong, Rui
    Koga, Yusuke
    Bandyadka, Shruthi
    Leshchyk, Anastasia
    Wang, Yichen
    Akavoor, Vidya
    Cao, Xinyun
    Sarfraz, Irzam
    Wang, Zhe
    Alabdullatif, Salam
    Jansen, Frederick
    Yajima, Masanao
    Johnson, W. Evan
    Campbell, Joshua D.
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [24] Multi-Target Integration and Annotation of Single-Cell RNA-Sequencing Data
    Bhandari, Sapan
    Whitener, Nathan P.
    Zhao, Konghao
    Khuri, Natalia
    13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022, 2022,
  • [25] A comprehensive human embryo reference tool using single-cell RNA-sequencing data
    Zhao, Cheng
    Reyes, Alvaro Plaza
    Schell, John Paul
    Weltner, Jere
    Ortega, Nicolas M.
    Zheng, Yi
    Bjorklund, Asa K.
    Baque-vidal, Laura
    Sokka, Joonas
    Torokovic, Ras
    Cox, Brian
    Rossant, Janet
    Fu, Jianping
    Petropoulos, Sophie
    Lanner, Fredrik
    NATURE METHODS, 2025, 22 (01) : 193 - 206
  • [26] Comprehensive generation, visualization, and reporting of quality control metrics for single-cell RNA sequencing data
    Rui Hong
    Yusuke Koga
    Shruthi Bandyadka
    Anastasia Leshchyk
    Yichen Wang
    Vidya Akavoor
    Xinyun Cao
    Irzam Sarfraz
    Zhe Wang
    Salam Alabdullatif
    Frederick Jansen
    Masanao Yajima
    W. Evan Johnson
    Joshua D. Campbell
    Nature Communications, 13
  • [27] Multi-modal generative modeling for joint analysis of single-cell T cell receptor and gene expression data
    Drost, Felix
    An, Yang
    Bonafonte-Pardas, Irene
    Dratva, Lisa M.
    Lindeboom, Rik G. H.
    Haniffa, Muzlifah
    Teichmann, Sarah A.
    Theis, Fabian
    Lotfollahi, Mohammad
    Schubert, Benjamin
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [28] Single-Cell RNA Sequencing in Parkinson's Disease
    Ma, Shi-Xun
    Lim, Su Bin
    BIOMEDICINES, 2021, 9 (04)
  • [29] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    Computational and Structural Biotechnology Journal, 2021, 19 : 3234 - 3244
  • [30] scDA: Single cell discriminant analysis for single-cell RNA sequencing data
    Shi, Qianqian
    Li, Xinxing
    Peng, Qirui
    Zhang, Chuanchao
    Chen, Luonan
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 3234 - 3244