Large-Scale Multi-View Subspace Clustering in Linear Time

被引:0
|
作者
Kang, Zhao [1 ]
Zhou, Wangtao [1 ]
Zhao, Zhitong [1 ]
Shao, Junming [1 ]
Han, Meng [2 ]
Xu, Zenglin [1 ,3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Management & Econ, Chengdu, Peoples R China
[3] Peng Cheng Lab, Ctr Artificial Intelligence, Shenzhen 518055, Peoples R China
关键词
ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A plethora of multi-view subspace clustering (MVSC) methods have been proposed over the past few years. Researchers manage to boost clustering accuracy from different points of view. However, many state-of-the-art MVSC algorithms, typically have a quadratic or even cubic complexity, are inefficient and inherently difficult to apply at large scales. In the era of big data, the computational issue becomes critical. To fill this gap, we propose a large-scale MVSC (LMVSC) algorithm with linear order complexity. Inspired by the idea of anchor graph, we first learn a smaller graph for each view. Then, a novel approach is designed to integrate those graphs so that we can implement spectral clustering on a smaller graph. Interestingly, it turns out that our model also applies to single-view scenario. Extensive experiments on various large-scale benchmark data sets validate the effectiveness and efficiency of our approach with respect to state-of-the-art clustering methods.
引用
收藏
页码:4412 / 4419
页数:8
相关论文
共 50 条
  • [41] Semi-supervised multi-view binary learning for large-scale image clustering
    Mingyang Liu
    Zuyuan Yang
    Wei Han
    Junhang Chen
    Weijun Sun
    Applied Intelligence, 2022, 52 : 14853 - 14870
  • [42] Semi-supervised multi-view binary learning for large-scale image clustering
    Liu, Mingyang
    Yang, Zuyuan
    Han, Wei
    Chen, Junhang
    Sun, Weijun
    APPLIED INTELLIGENCE, 2022, 52 (13) : 14853 - 14870
  • [43] MVImgNet: A Large-scale Dataset of Multi-view Images
    Yu, Xianggang
    Xu, Mutian
    Zhang, Yidan
    Liu, Haolin
    Ye, Chongjie
    Wu, Yushuang
    Yan, Zizheng
    Zhu, Chenming
    Xiong, Zhangyang
    Liang, Tianyou
    Chen, Guanying
    Cui, Shuguang
    Han, Xiaoguang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9150 - 9161
  • [44] Multi-Manifold Optimization for Multi-View Subspace Clustering
    Khan, Aparajita
    Maji, Pradipta
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (08) : 3895 - 3907
  • [45] Global and Local Consistent Multi-view Subspace Clustering
    Fan, Yanbo
    He, Ran
    Hu, Bao-Gang
    PROCEEDINGS 3RD IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION ACPR 2015, 2015, : 564 - 568
  • [46] Deep Multi-View Subspace Clustering with Anchor Graph
    Cui, Chenhang
    Ren, Yazhou
    Pu, Jingyu
    Pu, Xiaorong
    He, Lifang
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3577 - 3585
  • [47] MULTI-VIEW SUBSPACE CLUSTERING WITH LOCAL AND GLOBAL INFORMATION
    Duan, Yi-Qiang
    Yuan, Hao-Liang
    Lai, Loi Lei
    He, Ben
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2021, : 11 - 16
  • [48] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IET COMPUTER VISION, 2022,
  • [49] Latent shared representation for multi-view subspace clustering
    Huang, Baifu
    Yuan, Haoliang
    Lai, Loi Lei
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [50] Multi-View Subspace Clustering With Block Diagonal Representation
    Guo, Jipeng
    Yin, Wenbin
    Sun, Yanfeng
    Hu, Yongli
    IEEE ACCESS, 2019, 7 : 84829 - 84838