A REACTION-DIFFUSION SYSTEM ARISING IN GAME THEORY: EXISTENCE OF SOLUTIONS AND SPATIAL DOMINANCE

被引:0
|
作者
Deguchi, Hideo [1 ]
机构
[1] Toyama Univ, Dept Math, 3190 Gofuku, Toyama 9308555, Japan
来源
关键词
Reaction-diffusion system; discontinuous nonlinearities; initial value problem; existence; stability; equilibrium selection; game theory; INITIAL-VALUE PROBLEMS; WEAK SOLUTIONS; DISCONTINUOUS NONLINEARITIES; EQUILIBRIUM; EQUATION;
D O I
10.3934/dcdsb.2017200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The initial value problem for a reaction-diffusion system with discontinuous nonlinearities proposed by Hofbauer in 1999 as an equilibrium selection model in game theory is studied from the viewpoint of the existence and stability of solutions. An equilibrium selection result using the stability of a constant stationary solution is obtained for finite symmetric 2 person games with a 1/2-dominant equilibrium.
引用
收藏
页码:3891 / 3901
页数:11
相关论文
共 50 条
  • [41] ON EXISTENCE OF WAVEFRONT SOLUTIONS IN MIXED MONOTONE REACTION-DIFFUSION SYSTEMS
    Feng, Wei
    Ruan, Weihua
    Lu, Xin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (03): : 815 - 836
  • [42] Existence of Peregrine type solutions in fractional reaction-diffusion equations
    Besteiro, Agustin
    Rial, Diego
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (09) : 1 - 9
  • [43] Global Existence of Classical Solutions for a Class of Reaction-Diffusion Systems
    Laamri, El-Haj
    ACTA APPLICANDAE MATHEMATICAE, 2011, 115 (02) : 153 - 165
  • [44] Existence and Uniqueness of Classical Solutions to a Nonlinear Reaction-Diffusion Model
    Ambrazevicius, A.
    Skakauskas, V
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 559 - 575
  • [45] Existence and nonexistence of travelling waves of a reaction-diffusion system
    Liu, Guirong
    Qi, Yuanwei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (01) : 130 - 139
  • [46] EXISTENCE OF PULSES FOR A REACTION-DIFFUSION SYSTEM OF BLOOD COAGULATION
    Ratto, Nicolas
    Marion, Martine
    Volpert, Vitaly
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (01) : 141 - 167
  • [47] Existence of Waves for a Bistable Reaction-Diffusion System with Delay
    Volpert, V.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (02) : 615 - 629
  • [48] THE EXISTENCE OF SPIRAL WAVES IN AN OSCILLATORY REACTION-DIFFUSION SYSTEM
    PAULLET, J
    ERMENTROUT, B
    TROY, W
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (05) : 1386 - 1401
  • [49] SPATIAL PATTERNS IN A SIMPLE REACTION-DIFFUSION SYSTEM
    LAHIRI, A
    GHOSAL, SS
    PHYSICS LETTERS A, 1987, 124 (1-2) : 47 - 52
  • [50] Numerical solutions of a nonlinear reaction-diffusion system
    Wang, Yuan-Ming
    Gong, Yuan
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (09) : 1975 - 2002