Optimal pruning in neural networks

被引:5
|
作者
Barbato, DML
Kinouchi, O
机构
[1] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Pret, Dept Fis & Matemat, BR-14040901 Ribeirao Preto, SP, Brazil
[2] Univ Paulista, BR-13043055 Campinas, SP, Brazil
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 06期
关键词
D O I
10.1103/PhysRevE.62.8387
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study pruning strategies in simple perceptrons subjected to supervised learning. Our analytical results, obtained through the statistical mechanics approach to learning theory, are independent of the learning algorithm used in the training process. We calculate the post-training distribution P(J) of synaptic weights, which depends only on the overlap rho (0) achieved by the learning algorithm before pruning and the fraction kappa of relevant weights in the teacher network. From this distribution, we calculate the optimal pruning strategy for deleting small weights. The optimal pruning threshold grows from zero as theta (opt)(rho (0), kappa)proportional to[rho (0) - rho (c)(kappa)](1/2) above some critical value rho (c)(kappa). Thus, the elimination of weak synapses enhances the network performance only after a critical learning period. Possible implications for biological pruning phenomena are discussed.
引用
收藏
页码:8387 / 8394
页数:8
相关论文
共 50 条
  • [21] Flattening Layer Pruning in Convolutional Neural Networks
    Jeczmionek, Ernest
    Kowalski, Piotr A.
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [22] Activation-Based Pruning of Neural Networks
    Ganguli, Tushar
    Chong, Edwin K. P.
    Werner, Frank
    [J]. ALGORITHMS, 2024, 17 (01)
  • [23] Sparse optimization guided pruning for neural networks
    Shi, Yong
    Tang, Anda
    Niu, Lingfeng
    Zhou, Ruizhi
    [J]. NEUROCOMPUTING, 2024, 574
  • [24] DyPrune: Dynamic Pruning Rates for Neural Networks
    Aires Jonker, Richard Adolph
    Poudel, Roshan
    Fajarda, Olga
    Oliveira, Jose Luis
    Lopes, Rui Pedro
    Matos, Sergio
    [J]. PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I, 2023, 14115 : 146 - 157
  • [25] On rule pruning using fuzzy neural networks
    Pal, NR
    Pal, T
    [J]. FUZZY SETS AND SYSTEMS, 1999, 106 (03) : 335 - 347
  • [26] Structured Pruning of Deep Convolutional Neural Networks
    Anwar, Sajid
    Hwang, Kyuyeon
    Sung, Wonyong
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2017, 13 (03)
  • [27] An iterative pruning algorithm for feedforward neural networks
    Castellano, G
    Fanelli, AM
    Pelillo, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (03): : 519 - 531
  • [28] Automated Pruning of Neural Networks for Mobile Applications
    Glinserer, Andreas
    Lechner, Martin
    Wendt, Alexander
    [J]. 2021 IEEE 19TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2021,
  • [29] Evolving Better Initializations For Neural Networks With Pruning
    Zhou, Ryan
    Hu, Ting
    [J]. PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 703 - 706
  • [30] Pruning algorithms of neural networks - a comparative study
    Augasta, M. Gethsiyal
    Kathirvalavakumar, T.
    [J]. OPEN COMPUTER SCIENCE, 2013, 3 (03): : 105 - 115