IoT Resource-aware Orchestration Framework for Edge Computing

被引:2
|
作者
Agrawal, Niket [1 ]
Rellermeyer, Jan [1 ]
Ding, Aaron Yi [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
关键词
D O I
10.1145/3360468.3368179
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Existing edge computing solutions in the Internet of Things (IoT) domain operate with the control plane residing in the cloud and edge as a slave that executes the workload deployed by the cloud. The growing diversity in the IoT applications requires the edge to be able to run multiple distinct workloads corresponding to the dedicated inputs it receives, each catering to a specific task. Achieving this with the current approach poses a limitation as the cloud lacks the local knowledge at the edge and sharing this knowledge regularly between the edge and the cloud will defeat the very purpose of edge computing, i.e., low latency, less network congestion and data privacy. To solve this problem, we propose an orchestration framework for edge computing that enables the edge to actively initiate and orchestrate the workloads on request by using the local knowledge available in the form of IoT resources at the edge.
引用
收藏
页码:62 / 64
页数:3
相关论文
共 50 条
  • [31] Orchestration of Optical Networks and Cloud/Edge Computing for IoT Services
    Munoz, R.
    Vilalta, R.
    Casellas, R.
    Martinez, R.
    Yoshikane, N.
    Tsuritani, T.
    Morita, I
    [J]. 2019 24TH OPTOELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC) AND 2019 INTERNATIONAL CONFERENCE ON PHOTONICS IN SWITCHING AND COMPUTING (PSC), 2019,
  • [32] Efficient Resource-Aware Convolutional Neural Architecture Search for Edge Computing with Pareto-Bayesian Optimization
    Yang, Zhao
    Zhang, Shengbing
    Li, Ruxu
    Li, Chuxi
    Wang, Miao
    Wang, Danghui
    Zhang, Meng
    [J]. SENSORS, 2021, 21 (02) : 1 - 20
  • [33] Grosbeak: A Data Warehouse Supporting Resource-Aware Incremental Computing
    Wang, Zuozhi
    Zeng, Kai
    Huang, Botong
    Chen, Wei
    Cui, Xiaozong
    Wang, Bo
    Liu, Ji
    Fan, Liya
    Qu, Dachuan
    Hou, Zhenyu
    Guan, Tao
    Li, Chen
    Zhou, Jingren
    [J]. SIGMOD'20: PROCEEDINGS OF THE 2020 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2020, : 2797 - 2800
  • [34] Edge Computing Tasks Orchestration: An Energy-Aware Approach
    Thomsen, Johan Lohde
    Thomsen, Kristian Dragsbaek Schmidt
    Schmidt, Rasmus B.
    Jakobsgaard, Soren D.
    Beregaard, Thor
    Albano, Michele
    Moreschini, Sergio
    Taibi, Davide
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND COMMUNICATIONS, EDGE, 2023, : 115 - 117
  • [35] Adaptive QoS-Based Resource Management Framework for IoT/Edge Computing
    Springer, Tom
    Linstead, Erik
    [J]. 2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2018, : 210 - 217
  • [36] Resource-aware metacomputing
    Acharya, A
    Ranganathan, M
    Saltz, J
    [J]. CONCURRENCY-PRACTICE AND EXPERIENCE, 1997, 9 (06): : 649 - 674
  • [37] Resource-aware policies
    Bottoni, Paolo
    Fish, Andrew
    Heussner, Alexander
    Presicce, Francesco Parisi
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2017, 38 : 84 - 96
  • [38] Resource-Aware IoT Control: Saving Communication Through Predictive Triggering
    Trimpe, Sebastian
    Baumann, Dominik
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2019, 6 (03): : 5013 - 5028
  • [39] Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Computing
    Bartolomeo, Giovanni
    Yosofie, Mehdi
    Baeurle, Simon
    Haluszczynski, Oliver
    Mohan, Nitinder
    Ott, Joerg
    [J]. PROCEEDINGS OF THE 2023 USENIX ANNUAL TECHNICAL CONFERENCE, 2023, : 215 - 231
  • [40] SoftIoT: A resource-aware SDN/NFV-based IoT network
    Haque, Israat
    Saha, Dipon
    [J]. JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2021, 193