The Chebyshev-Legendre collocation method for a class of optimal control problems

被引:22
|
作者
Zhang, Wen [1 ]
Ma, Heping [1 ]
机构
[1] Shanghai Univ, Coll Sci, Dept Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Chebyshev-Legendre method; optimal control problems; legendre polynomials; Chebyshev-Gauss-Lobatto points; nonlinear programming problems;
D O I
10.1080/00207160701417381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive the so-called Chebyshev-Legendre method for a class of optimal control problems governed by ordinary differential equations. We use Legendre expansions to approximate the control and state functions and we employ the Chebyshev-Gauss-Lobatto (CGL) points as the interpolating points. Thus the unknown variables of the equivalent nonlinear programming problems are the coefficients of the Legendre expansions of both the state and the control functions. We evaluate the function values at the CGL nodes via the fast Legendre transform. In this way, the fast Legendre transform can be utilized to save CPU calculation time. Some numerical examples are given to illustrate the applicability and high accuracy of the Chebyshev-Legendre method in solving a wide class of optimal control problem.
引用
收藏
页码:225 / 240
页数:16
相关论文
共 50 条
  • [41] A LEGENDRE GALERKIN SPECTRAL METHOD FOR OPTIMAL CONTROL PROBLEMS
    Yanping CHEN School of Mathematical Sciences
    School of Mathematics and Computational Science
    Journal of Systems Science & Complexity, 2011, 24 (04) : 663 - 671
  • [42] A FAST, SIMPLE, AND STABLE CHEBYSHEV-LEGENDRE TRANSFORM USING AN ASYMPTOTIC FORMULA
    Hale, Nicholas
    Townsend, Alex
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (01): : A148 - A167
  • [43] Numerical solution of the coupled viscous Burgers equations by Chebyshev-Legendre Pseudo-Spectral method
    Rashid, Abdur
    Abbas, Muhammad
    Ismail, Ahmad Izani Md.
    Majid, Ahmad Abd
    Applied Mathematics and Computation, 2014, 245 : 372 - 381
  • [44] Numerical solution of the coupled viscous Burgers equations by Chebyshev-Legendre Pseudo-Spectral method
    Rashid, Abdur
    Abbas, Muhammad
    Ismail, Ahmad Izani Md.
    Majid, Ahmad Abd
    Applied Mathematics and Computation, 2014, 245 : 372 - 381
  • [45] Iterative Chebyshev approximation method for optimal control problems
    Wu, Di
    Yu, Changjun
    Wang, Hailing
    Bai, Yanqin
    Teo, Kok-Lay
    Toh, Kim-Chuan
    ISA TRANSACTIONS, 2024, 152 : 277 - 289
  • [46] An RBF collocation method for solving optimal control problems
    Mirinejad, Hossein
    Inanc, Tamer
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2017, 87 : 219 - 225
  • [47] Numerical solution of the coupled viscous Burgers equations by Chebyshev-Legendre Pseudo-Spectral method
    Rashid, Abdur
    Abbas, Muhammad
    Ismail, Ahmad Izani Md.
    Abd Majid, Ahmad
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 245 : 372 - 381
  • [48] The Legendre Galerkin-Chebyshev collocation method for Burgers-like equations
    Li, HY
    Wu, H
    Ma, HP
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2003, 23 (01) : 109 - 124
  • [49] THE PSEUDOSPECTRAL LEGENDRE METHOD FOR DISCRETIZING OPTIMAL-CONTROL PROBLEMS
    ELNAGAR, G
    KAZEMI, MA
    RAZZAGHI, M
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (10) : 1793 - 1796
  • [50] Parameter estimation in two-dimensional space by mixed Chebyshev-Legendre approximations
    Kwon, Y
    Guo, BY
    Cha, KH
    JOURNAL OF SCIENTIFIC COMPUTING, 2003, 18 (02) : 235 - 251