Constructing Fast Algorithms by Expanding a Set of Matrices into Rank-1 Matrices

被引:0
|
作者
da Silva, G. Jeronimo, Jr. [1 ]
de Souza, R. M. Campello [1 ]
机构
[1] Fed Univ Pernambuco UFPE, Dept Elect & Syst, Ave Arquitetura S-N,Bloco B,4o Andar, BR-50740550 Recife, PE, Brazil
关键词
Fast algorithms; Rank-1 set of matrices expansion; Fast Fourier transform; Multiplicative complexity;
D O I
10.1007/s00034-019-01228-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces the notion of numerical basis for a numerical space and uses it to establish a relation between a fast algorithm for computing a discrete linear transform and the problem of expanding a given finite set of matrices as a linear combination of rank-1 matrices. It is shown that the number of multiplications of the algorithm is given by the number of rank-1 matrices in the expansion. Applying this approach, an algorithm for computing three components of the nine-point discrete Fourier transform (DFT) and an algorithm to compute the seven-point DFT with the least possible number of multiplications are shown.
引用
收藏
页码:1630 / 1648
页数:19
相关论文
共 50 条
  • [31] A novel procedure for constructing invariant subspaces of a set of matrices
    Ahmad Y. Al-Dweik
    Ryad Ghanam
    Gerard Thompson
    Hassan Azad
    Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 77 - 93
  • [32] A novel procedure for constructing invariant subspaces of a set of matrices
    Al-Dweik, Ahmad Y.
    Ghanam, Ryad
    Thompson, Gerard
    Azad, Hassan
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 77 - 93
  • [33] The (Minimum) Rank of Typical Fooling-Set Matrices
    Pourmoradnasseri, Mozhgan
    Theis, Dirk Oliver
    COMPUTER SCIENCE - THEORY AND APPLICATIONS (CSR 2017), 2017, 10304 : 273 - 284
  • [34] Optimal rank-1 Hankel approximation of matrices: Frobenius norm and spectral norm and Cadzow's algorithm
    Knirsch, Hanna
    Petz, Markus
    Plonka, Gerlind
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 629 : 1 - 39
  • [35] Randomized algorithms for the low-rank approximation of matrices
    Liberty, Edo
    Woolfe, Franco
    Martinsson, Per-Gunnar
    Rolchlin, Vladimir
    Tyger, Mark
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (51) : 20167 - 20172
  • [36] Fast Monte Carlo algorithms for matrices II: Computing a low-rank approximation to a matrix
    Drineas, Petros
    Kannan, Ravi
    Mahoney, Michael W.
    SIAM JOURNAL ON COMPUTING, 2006, 36 (01) : 158 - 183
  • [37] A FAST ALGORITHM FOR CONSTRUCTING TREES FROM DISTANCE MATRICES
    CULBERSON, JC
    RUDNICKI, P
    INFORMATION PROCESSING LETTERS, 1989, 30 (04) : 215 - 220
  • [38] FAST ALGORITHMS FOR STRUCTURED MATRICES AND INTERPOLATION PROBLEMS
    HEINIG, G
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1991, 165 : 201 - 211
  • [39] FAST HESSENBERG REDUCTION OF SOME RANK STRUCTURED MATRICES
    Gemignani, L.
    Robol, L.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2017, 38 (02) : 574 - 598
  • [40] Fast low-rank approximation for covariance matrices
    Belabbas, Mohamed-Ali
    Wolfe, Patrick J.
    2007 2ND IEEE INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING, 2007, : 181 - 184