Constructing Fast Algorithms by Expanding a Set of Matrices into Rank-1 Matrices

被引:0
|
作者
da Silva, G. Jeronimo, Jr. [1 ]
de Souza, R. M. Campello [1 ]
机构
[1] Fed Univ Pernambuco UFPE, Dept Elect & Syst, Ave Arquitetura S-N,Bloco B,4o Andar, BR-50740550 Recife, PE, Brazil
关键词
Fast algorithms; Rank-1 set of matrices expansion; Fast Fourier transform; Multiplicative complexity;
D O I
10.1007/s00034-019-01228-5
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces the notion of numerical basis for a numerical space and uses it to establish a relation between a fast algorithm for computing a discrete linear transform and the problem of expanding a given finite set of matrices as a linear combination of rank-1 matrices. It is shown that the number of multiplications of the algorithm is given by the number of rank-1 matrices in the expansion. Applying this approach, an algorithm for computing three components of the nine-point discrete Fourier transform (DFT) and an algorithm to compute the seven-point DFT with the least possible number of multiplications are shown.
引用
收藏
页码:1630 / 1648
页数:19
相关论文
共 50 条
  • [1] Constructing Fast Algorithms by Expanding a Set of Matrices into Rank-1 Matrices
    G. Jerônimo da Silva
    R. M. Campello de Souza
    Circuits, Systems, and Signal Processing, 2020, 39 : 1630 - 1648
  • [2] Weakly commuting maps on the set of rank-1 matrices
    Franca, Willian
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (03): : 475 - 495
  • [3] RANK-1 MATRICES A, B, A + B
    GLICK, N
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (02): : 133 - 133
  • [4] Rank-1 preservers on Hessenberg matrices
    Khachorncharoenkul, P.
    Pianskool, S.
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (01): : 96 - 113
  • [5] Rank and perimeter preservers of Boolean rank-1 matrices
    Song, SZ
    Beasley, LB
    Cheon, GS
    Jun, YB
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2004, 41 (02) : 397 - 406
  • [6] Separability of distinct Boolean rank-1 matrices
    Song S.-Z.
    Journal of Applied Mathematics and Computing, 2005, 18 (1-2) : 197 - 204
  • [7] SURJECTIVE ADDITIVE RANK-1 PRESERVERS ON HESSENBERG MATRICES
    Khachorncharoenkul, Prathomjit
    Pianskool, Sajee
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2019, 35 : 24 - 34
  • [8] On the optimal rank-1 approximation of matrices in the Chebyshev norm
    Morozov, Stanislav
    Smirnov, Matvey
    Zamarashkin, Nikolai
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 679 : 4 - 29
  • [9] Fast Algorithms for Rank-1 Bimatrix Games
    Adsul, Bharat
    Garg, Jugal
    Mehta, Ruta
    Sohoni, Milind
    von Stengel, Bernhard
    OPERATIONS RESEARCH, 2021, 69 (02) : 613 - 631
  • [10] On the stability of convex sums of rank-1 perturbed matrices
    Laffey, T
    Shorten, R
    Cairbre, FO
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 1246 - 1247