Deep Reinforcement Learning-Based Vehicle Energy Efficiency Autonomous Learning System

被引:0
|
作者
Qi, Xuewei [1 ]
Luo, Yadan [1 ]
Wu, Guoyuan [1 ]
Boriboonsomsin, Kanok [1 ]
Barth, Matthew J. [1 ]
机构
[1] Univ Calif Riverside, CE CERT, Riverside, CA 92507 USA
关键词
HYBRID ELECTRIC VEHICLES; MANAGEMENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To mitigate air pollution problems and reduce greenhouse gas emissions (GHG), plug-in hybrid electric vehicles (PHEV) have been developed to achieve higher fuel efficiency. The Energy Management System (EMS) is a very important component of a PHEV in achieving better fuel economy and it is a very active research area. So far, most of the existing EMS strategies just simple follow predefined rules that are not adaptive to changing driving conditions; other strategies as starting to incorporate accurate prediction of future traffic conditions. In this study, a deep reinforcement learning based PHEV energy management system is designed to autonomously learn the optimal fuel use from its own historical driving record. It is a fully data-driven and learning-enabled model that does not rely on any prediction or predefined rules. The experiment results show that the proposed model is able to achieve 16.3% energy savings comparing to conventional binary control strategies.
引用
收藏
页码:1228 / 1233
页数:6
相关论文
共 50 条
  • [41] Reinforcement Learning-Based Home Energy Management System for Resiliency
    Raman, Naren Srivaths
    Gaikwad, Ninad
    Barooah, Prabir
    Meyn, Sean P.
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 1358 - 1364
  • [42] ATENA: An Autonomous System for Data Exploration Based on Deep Reinforcement Learning
    Bar, El Ori
    Milo, Tova
    Somech, Amit
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2873 - 2876
  • [43] Distributed Deep Reinforcement Learning-Based Gradient Quantization for Federated Learning Enabled Vehicle Edge Computing
    Zhang, Cui
    Zhang, Wenjun
    Wu, Qiong
    Fan, Pingyi
    Fan, Qiang
    Wang, Jiangzhou
    Letaief, Khaled B.
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 4899 - 4913
  • [44] Deep reinforcement learning based collision avoidance system for autonomous ships
    Wang, Yong
    Xu, Haixiang
    Feng, Hui
    He, Jianhua
    Yang, Haojie
    Li, Fen
    Yang, Zhen
    OCEAN ENGINEERING, 2024, 292
  • [45] DEEP REINFORCEMENT LEARNING-BASED IRRIGATION SCHEDULING
    Yang, Y.
    Hu, J.
    Porter, D.
    Marek, T.
    Heflin, K.
    Kong, H.
    Sun, L.
    TRANSACTIONS OF THE ASABE, 2020, 63 (03) : 549 - 556
  • [46] Deep reinforcement learning-based control strategy for integration of a hybrid energy storage system in microgrids
    Kumar, Kuldeep
    Kwon, Sanghyeob
    Bae, Sungwoo
    JOURNAL OF ENERGY STORAGE, 2025, 108
  • [47] Deep reinforcement learning-based joint load scheduling for household multi-energy system
    Zhao, Liyuan
    Yang, Ting
    Li, Wei
    Zomaya, Albert Y.
    APPLIED ENERGY, 2022, 324
  • [48] Deep Reinforcement Learning-Based Security-Constrained Battery Scheduling in Home Energy System
    Wang, Bo
    Zha, Zhongyi
    Zhang, Lijun
    Liu, Lei
    Fan, Huijin
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 3548 - 3561
  • [49] Deep reinforcement learning-based operation of fast charging stations coupled with energy storage system
    Hussain, Akhtar
    Bui, Van-Hai
    Kim, Hak-Man
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 210
  • [50] Reinforcement Learning-Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle
    Liu, Teng
    Zou, Yuan
    Liu, Dexing
    Sun, Fengchun
    ENERGIES, 2015, 8 (07): : 7243 - 7260