Deep Reinforcement Learning-Based Vehicle Energy Efficiency Autonomous Learning System

被引:0
|
作者
Qi, Xuewei [1 ]
Luo, Yadan [1 ]
Wu, Guoyuan [1 ]
Boriboonsomsin, Kanok [1 ]
Barth, Matthew J. [1 ]
机构
[1] Univ Calif Riverside, CE CERT, Riverside, CA 92507 USA
关键词
HYBRID ELECTRIC VEHICLES; MANAGEMENT;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To mitigate air pollution problems and reduce greenhouse gas emissions (GHG), plug-in hybrid electric vehicles (PHEV) have been developed to achieve higher fuel efficiency. The Energy Management System (EMS) is a very important component of a PHEV in achieving better fuel economy and it is a very active research area. So far, most of the existing EMS strategies just simple follow predefined rules that are not adaptive to changing driving conditions; other strategies as starting to incorporate accurate prediction of future traffic conditions. In this study, a deep reinforcement learning based PHEV energy management system is designed to autonomously learn the optimal fuel use from its own historical driving record. It is a fully data-driven and learning-enabled model that does not rely on any prediction or predefined rules. The experiment results show that the proposed model is able to achieve 16.3% energy savings comparing to conventional binary control strategies.
引用
收藏
页码:1228 / 1233
页数:6
相关论文
共 50 条
  • [1] An Autonomous Illumination System for Vehicle Documentation Based on Deep Reinforcement Learning
    Leontaris, Lampros
    Dimitriou, Nikolaos
    Ioannidis, Dimosthenis
    Votis, Konstantinos
    Tzovaras, Dimitrios
    Papageorgiou, Elpiniki
    IEEE ACCESS, 2021, 9 : 75336 - 75348
  • [2] A review on reinforcement learning-based highway autonomous vehicle control
    Irshayyid, Ali
    Chen, Jun
    Xiong, Guojiang
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2024, 3 (04):
  • [3] Deep Reinforcement Learning-based Energy Efficiency Optimization For Flying LoRa Gateways
    Jouhari, Mohammed
    Ibrahimi, Khalil
    Ben Othman, Jalel
    Amhoud, El Mehdi
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 6157 - 6162
  • [4] Controlling an Autonomous Vehicle with Deep Reinforcement Learning
    Folkers, Andreas
    Rick, Matthias
    Bueskens, Christof
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 2025 - 2031
  • [5] Deep reinforcement learning-based collision avoidance for an autonomous ship
    Chun, Do-Hyun
    Roh, Myung-Il
    Lee, Hye-Won
    Ha, Jisang
    Yu, Donghun
    OCEAN ENGINEERING, 2021, 234
  • [6] Deep Reinforcement Learning-Based Charging Pricing for Autonomous Mobility-on-Demand System
    Lu, Ying
    Liang, Yanchang
    Ding, Zhaohao
    Wu, Qiuwei
    Ding, Tao
    Lee, Wei-Jen
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (02) : 1412 - 1426
  • [7] Deep reinforcement learning-based scheduling for integrated energy system utilizing retired electric vehicle battery energy storage
    Hu, Chunlin
    Li, Donghe
    Zhao, Weichun
    Xi, Huan
    JOURNAL OF ENERGY STORAGE, 2024, 97
  • [8] A Deep Reinforcement Learning-based Task Scheduling Algorithm for Energy Efficiency in Data Centers
    Song, Penglei
    Chi, Ce
    Ji, Kaixuan
    Liu, Zhiyong
    Zhang, Fa
    Zhang, Shikui
    Qiu, Dehui
    Wan, Xiaohua
    30TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2021), 2021,
  • [9] Deep Reinforcement Learning-Based Energy-Efficient Decision-Making for Autonomous Electric Vehicle in Dynamic Traffic Environments
    Wu, Jingda
    Song, Ziyou
    Lv, Chen
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 875 - 887
  • [10] Research on Decision Model of Autonomous Vehicle Based on Deep Reinforcement Learning
    Zhang, Xinchen
    Zhang, Jun
    Lin, Yuansheng
    Xie, Longyang
    PROCEEDINGS OF 2021 IEEE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2021), 2021, : 131 - 135