Cooperative field localization and excitation eigenmodes in disordered metamaterials

被引:5
|
作者
Papasimakis, Nikitas [1 ,2 ]
Jenkins, Stewart D. [2 ,3 ]
Savo, Salvatore [1 ,2 ,4 ]
Zheludev, Nikolay, I [1 ,2 ,5 ,6 ]
Ruostekoski, Janne [2 ,3 ,7 ]
机构
[1] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[2] Univ Southampton, Ctr Photon Metamat, Southampton SO17 1BJ, Hants, England
[3] Univ Southampton, Math Sci, Southampton SO17 1BJ, Hants, England
[4] TetraScience Inc, 114 Western Ave, Boston, MA 02134 USA
[5] Nanyang Technol Univ, Sch Phys & Math Sci, Ctr Disrupt Photon Technol, Singapore 637378, Singapore
[6] Nanyang Technol Univ, Photon Inst, Singapore 637378, Singapore
[7] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
基金
英国工程与自然科学研究理事会;
关键词
N-ATOM SYSTEM; RADIATION; LIGHT;
D O I
10.1103/PhysRevB.99.014210
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate numerically and experimentally the near-field response of disordered arrays comprising asymmetrically split ring resonators that exhibit a strong cooperative response. Our simulations treat the unit cell split-ring resonators as discrete pointlike oscillators with associated electric and magnetic point dipole radiation, while the strong cooperative radiative coupling between the different split rings is fully included at all orders. The methods allow us to calculate local field and Purcell factor enhancement arising from the collective electric and magnetic excitations. We find substantially increased standard deviation of the Purcell enhancement with disorder, making it increasingly likely to find collective excitation eigenmodes with very high Purcell factors that are also stronger for magnetic than electric excitations. We show that disorder can dramatically modify the cooperative response of the metamaterial even in the presence of strong dissipation losses, as is the case for plasmonic systems. Our analysis in terms of collective eigenmodes paves the way for controlled engineering of electromagnetic device functionalities based on strongly interacting metamaterial arrays.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Localization of scalar and fermionic eigenmodes and confinement
    Polikarpov, MI
    Gubarev, FV
    Morozov, SM
    Syritsyn, SV
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2006, 153 : 221 - 228
  • [22] LOCALIZATION AND DELOCALIZATION OF EIGENMODES OF HARMONIC OSCILLATORS
    Arnaiz, Victor
    Macia, Fabricio
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (05) : 2195 - 2208
  • [23] Inhomogeneous localization of polar eigenmodes in fractals
    Stockman, MI
    Pandey, LN
    George, TF
    PHYSICAL REVIEW B, 1996, 53 (05) : 2183 - 2186
  • [24] Finite Element Analysis of Eigenmodes in a Resonator Loaded with Chiral Metamaterials
    Limpananvadee, Yuranan
    Angkaew, Tuptim
    ASIA-PACIFIC MICROWAVE CONFERENCE 2011, 2011, : 1885 - 1888
  • [25] Eigenmodes excitation in reflectors for resonant and wideband antennas
    Veremey, V
    Poyedinchuk, A
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM - 1996 DIGEST, VOLS 1-3, 1996, : 1848 - 1851
  • [26] Excitation of stable Alfven eigenmodes by application of alternating magnetic field perturbations in the Compact Helical System
    Ito, T.
    Toi, K.
    Matsunaga, G.
    Isobe, M.
    Nagaoka, K.
    Takeuchi, M.
    Akiyama, T.
    Matsuoka, K.
    Minami, T.
    Nishimura, S.
    Okamura, S.
    Shimizu, A.
    Suzuki, C.
    Yoshimura, Y.
    Takahashi, C.
    PHYSICS OF PLASMAS, 2009, 16 (09)
  • [27] Excitation of eigenmodes at gyroelectromagnetic gratings in conical mounting
    Inchaussandague, Marina E.
    Gigli, Miriam L.
    OPTIK, 2006, 117 (05): : 210 - 214
  • [28] Eigenmodes of a disordered FeCo magnonic crystal at finite temperatures
    Paischer, S.
    Buczek, P. A.
    Buczek, N.
    Eilmsteiner, D.
    Ernst, A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (33)
  • [29] Two-scale localization in disordered wires in a magnetic field
    Kolesnikov, AV
    Efetov, KB
    PHYSICAL REVIEW LETTERS, 1999, 83 (18) : 3689 - 3692
  • [30] Theory of localization in a disordered ring in a non-Hermitian field
    Heinrichs, J
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2002, 231 (01): : 19 - 30