Plasma kinetics in molecular plasmas and modeling of reentry plasmas

被引:22
|
作者
Capitelli, M. [1 ,2 ]
Celiberto, R. [3 ]
Colonna, G. [2 ]
D'Ammando, G. [1 ]
De Pascale, O. [2 ]
Diomede, P. [4 ]
Esposito, F. [2 ]
Gorse, C. [1 ,2 ]
Laricchiuta, A. [2 ]
Longo, S. [1 ,2 ]
Pietanza, L. D. [2 ]
Taccogna, F. [2 ]
机构
[1] Univ Bari, Dept Chem, I-70126 Bari, Italy
[2] CNR IMIP Bari, I-70126 Bari, Italy
[3] Bari Polytech, Dept Water Engn & Chem, Bari, Italy
[4] Univ Houston, Plasma Proc Lab, Dept Chem & Biomol Engn, Houston, TX USA
关键词
ENERGY DISTRIBUTION-FUNCTIONS; DISSOCIATIVE ELECTRON-ATTACHMENT; NEGATIVE-ION PRODUCTION; ELEY-RIDEAL REACTIONS; GRAPHITE SURFACE; H-ATOMS; SUPERELASTIC COLLISIONS; VIBRATIONAL KINETICS; BOLTZMANN-EQUATION; RATE COEFFICIENTS;
D O I
10.1088/0741-3335/53/12/124007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
State-to-state non-equilibrium plasma kinetics is widely used to characterize cold molecular and reentry plasmas. The approach requires a high level of dynamical information, and demands a large effort in the creation of complete databases of state-resolved cross sections and rate coefficients. Recent results, emphasizing the dependence of elementary process probability on both the vibrational and rotational energy content of the H-2 molecule, are presented for those channels governing the microscopic collisional dynamics in non-equilibrium plasmas, i.e. electron-impact induced resonant processes, vibrational deactivation and dissociation in atom-diatom collisions and atomic recombination at the surface. Results for H-2 plasmas, i.e. negative ion sources for neutral beam injection in fusion reactors, RF parallel-plate reactors for microelectronics, atmospheric discharges and the shock wave formed in the hypersonic entry of vehicles in planetary atmosphere for aerothermodynamics, are discussed.
引用
下载
收藏
页数:21
相关论文
共 50 条
  • [42] FLUID MODELING OF MAGNETIZED PLASMAS
    BRACKBILL, J
    SPACE SCIENCE REVIEWS, 1985, 42 (1-2) : 153 - 167
  • [43] Modeling of voids in colloidal plasmas
    Akdim, MR
    Goedheer, WJ
    PHYSICAL REVIEW E, 2002, 65 (01):
  • [44] PARTICLE MODELING OF PLASMAS ON SUPERCOMPUTERS
    DAWSON, JM
    DECYK, VK
    INTERNATIONAL JOURNAL OF SUPERCOMPUTER APPLICATIONS AND HIGH PERFORMANCE COMPUTING, 1987, 1 (01): : 24 - 43
  • [45] Graphene and Carbon Nanotubes From Arc Plasmas: Experiment and Plasma Modeling
    Tam, E.
    Levchenko, I.
    Li, J.
    Shashurin, A.
    Murphy, A. B.
    Keidar, M.
    Ostrikov, K.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (11) : 2798 - 2799
  • [46] MAGNETOHYDRODYNAMIC MODELING FOR FUSION PLASMAS
    Keppens, R.
    Goedbloed, J. P.
    Blokland, J. W. S.
    FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (2T) : 137 - 147
  • [47] Modeling of magnetron sputtering plasmas
    Shon, CH
    Lee, JK
    APPLIED SURFACE SCIENCE, 2002, 192 (1-4) : 258 - 269
  • [48] Reduced descriptions for complex plasmas: Simple examples, plasma kinetics, and transport truncations
    Spatschek, KH
    FUSION SCIENCE AND TECHNOLOGY, 2004, 45 (2T) : 135 - 150
  • [49] BASIC ION REACTIONS AND KINETICS IN PLASMAS
    LINDINGER, W
    PURE AND APPLIED CHEMISTRY, 1985, 57 (09) : 1223 - 1234
  • [50] Kinetics of excitation and ionization in nonideal plasmas
    Starostin, AN
    Aleksandrov, NL
    PHYSICS OF PLASMAS, 1998, 5 (05) : 2127 - 2129