α-Fe2O3/TiO2 stratified photoanodes

被引:14
|
作者
Krysa, J. [1 ]
Nemeckova, A. [1 ]
Zlamal, M. [1 ]
Kotrla, T. [1 ]
Baudys, M. [1 ]
Kment, S. [2 ]
Hubicka, Z. [2 ]
Neumann-Spallart, M. [1 ]
机构
[1] Univ Chem & Technol Prague, Dept Inorgan Technol, Tech 5, Prague 16628 6, Czech Republic
[2] Inst Phys ASCR, Vvi, Na Slovance 2, Prague 18221 8, Czech Republic
关键词
alpha-Fe2O3; Thin films; Stratified electrodes; Photoelectrochemistry; Photocorrosion; HEMATITE PHOTOANODES; PEC ACTIVITY; WATER; FILMS; TIO2; PHOTOELECTRODES; TEMPERATURE; THICKNESS;
D O I
10.1016/j.jphotochem.2018.03.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Bilayer alpha-Fe2O3/TiO2 thin films were prepared with the aim of minimising photocorrosion of hematite. Conductive fluorine doped tin oxide (FTO)/glass was used as substrate for successive deposition of (i) alpha-Fe2O3 layers by high-power impulse magnetron sputtering (HIPIMS) and (ii) TiO2 (sol-gel method using dip-coating): The influence of annealing temperature (250-750 degrees C) and hematite layer thickness on the photoelectrochemical performance was evaluated. Hematite films on FTO substrates, calcined at 650 degrees C or 750 degrees C show increased photoelectrochemical response due to doping by Sn diffusion from the substrate. The photoresponse decreases with increasing thickness from 20 to 100 nm due to incomplete doping of the bulk. For bilayer hematite/TiO2 films, the visible light photoresponse is higher than that for the single hematite film which is ascribed to suppression of surface recombination at the Fe2O3/electrolyte junction by capping with TiO2. The Faradaic efficiency of the photocorrosion reaction was found to be 0.8% for an unprotected hematite electrode and decreased to 0.1% for a hematite electrode covered with a 65 nm thick layer of TiO2, thus proving the beneficial role of TiO2 in protecting hematite against photocorrosion. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 17
页数:6
相关论文
共 50 条
  • [21] TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting
    Krysa, Josef
    Zlamal, Martin
    Kment, Stepan
    Brunclikova, Michaela
    Hubicka, Zdenek
    MOLECULES, 2015, 20 (01) : 1046 - 1058
  • [22] Preparation and photocatalytic activity of TiO2/Fe2O3 nanocomposite
    Hu, Sujuan
    Zhang, Xuanhui
    He, Ying
    Hu, Xianchao
    Cheng, Lei
    Li, Guohua
    MECHANICAL AND ELECTRONICS ENGINEERING III, PTS 1-5, 2012, 130-134 : 2396 - +
  • [23] Synthesis and Antibacterial Performance of γ-Fe2O3/Ag/TiO2
    Ai Cuiling
    Wu Lina
    Zhang Rongrong
    Shao Xiangwen
    Xu Junge
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2019, 40 (04): : 645 - 651
  • [24] Kinetics of methane combustion on Fe2O3/TiO2 catalysts
    Pecchi, G
    Reyes, P
    Zamora, R
    REACTION KINETICS AND CATALYSIS LETTERS, 2003, 80 (02): : 375 - 381
  • [25] Impedance measurements on TiO2–Fe2O3 thin films
    N.V. Prasad
    K. Srinivas
    G.S. Kumar
    A.R. James
    Applied Physics A, 2001, 72 : 341 - 345
  • [26] Thermal behavior of Fe2O3/TiO2 mesoporous gels
    Balek, V
    Todorova, N
    Trapalis, C
    Stengl, V
    Vecerníková, E
    Subrt, J
    Malek, Z
    Kordas, G
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2005, 80 (02) : 503 - 509
  • [27] Kinetics of methane combustion on Fe2O3/TiO2 catalysts
    Gina Pecchi
    Patricio Reyes
    Raúl Zamora
    Reaction Kinetics and Catalysis Letters, 2003, 80 : 375 - 381
  • [28] Synthesis and Photocatalytic Activity of Monolithic Fe2O3/TiO2
    Chang, Wei
    Zhang, Maojin
    Ren, Xiaosai
    Miller, Andrew
    SOUTH AFRICAN JOURNAL OF CHEMISTRY-SUID-AFRIKAANSE TYDSKRIF VIR CHEMIE, 2017, 70 : 127 - 131
  • [29] Thermal behavior of Fe2O3/TiO2 mesoporous gels
    V. Balek
    N. Todorova
    C. Trapalis
    V. Štengl
    E. Večerníková
    J. Šubrt
    Z. Malek
    G. Kordas
    Journal of Thermal Analysis and Calorimetry, 2005, 80 : 503 - 509
  • [30] Direct Laser Synthesis of Fe2O3 Modified TiO2
    Lennikov, V. V.
    Gomez-Herrero, A.
    Angurel, L. A.
    de la Fuente, G. F.
    Otero-Diaz, L. C.
    ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, 2024, 650 (20):