Proteomic Tissue-Based Classifier for Early Prediction of Prostate Cancer Progression

被引:11
|
作者
Gao, Yuqian [1 ]
Wang, Yi-Ting [1 ]
Chen, Yongmei [2 ,3 ,4 ]
Wang, Hui [1 ]
Young, Denise [2 ,3 ,4 ]
Shi, Tujin [1 ]
Song, Yingjie [2 ,3 ,4 ]
Schepmoes, Athena A. [1 ]
Kuo, Claire [2 ,3 ,4 ]
Fillmore, Thomas L. [1 ]
Qian, Wei-Jun [1 ]
Smith, Richard D. [1 ]
Srivastava, Sudhir [5 ]
Kagan, Jacob [5 ]
Dobi, Albert [2 ,3 ,4 ]
Sesterhenn, Isabell A. [6 ]
Rosner, Inger L. [3 ,4 ]
Petrovics, Gyorgy [2 ,3 ,4 ]
Rodland, Karin D. [1 ,7 ]
Srivastava, Shiv [3 ,4 ]
Cullen, Jennifer [2 ,3 ,4 ,8 ]
Liu, Tao [1 ]
机构
[1] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99354 USA
[2] Henry M Jackson Fdn Adv Mil Med, Bethesda, MD 20817 USA
[3] Uniformed Serv Univ Hlth Sci, Ctr Prostate Dis Res, John P Murtha Canc Ctr, Res Program,Dept Surg, Bethesda, MD 20814 USA
[4] Walter Reed Natl Mil Med Ctr, Bethesda, MD 20814 USA
[5] NCI, Canc Biomarkers Res Grp, Canc Prevent Div, Bethesda, MD 20892 USA
[6] Joint Pathol Ctr, Silver Spring, MD 20910 USA
[7] Oregon Hlth & Sci Univ, Dept Cell Dev & Canc Biol, Portland, OR 97201 USA
[8] Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH 44106 USA
关键词
biochemical recurrence; biomarkers; early detection; metastasis; prostate cancer; proteomics; EXPRESSION; BIOPSY; OSTEONECTIN/SPARC; QUANTIFICATION; DIAGNOSIS;
D O I
10.3390/cancers12051268
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Although similar to 40% of screen-detected prostate cancers (PCa) are indolent, advanced-stage PCa is a lethal disease with 5-year survival rates around 29%. Identification of biomarkers for early detection of aggressive disease is a key challenge. Starting with 52 candidate biomarkers, selected from existing PCa genomics datasets and known PCa driver genes, we used targeted mass spectrometry to quantify proteins that significantly differed in primary tumors from PCa patients treated with radical prostatectomy (RP) across three study outcomes: (i) metastasis >= 1-year post-RP, (ii) biochemical recurrence >= 1-year post-RP, and (iii) no progression after >= 10 years post-RP. Sixteen proteins that differed significantly in an initial set of 105 samples were evaluated in the entire cohort (n = 338). A five-protein classifier which combined FOLH1, KLK3, TGFB1, SPARC, and CAMKK2 with existing clinical and pathological standard of care variables demonstrated significant improvement in predicting distant metastasis, achieving an area under the receiver-operating characteristic curve of 0.92 (0.86, 0.99, p = 0.001) and a negative predictive value of 92% in the training/testing analysis. This classifier has the potential to stratify patients based on risk of aggressive, metastatic PCa that will require early intervention compared to low risk patients who could be managed through active surveillance.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Proteomic analyses of human prostate cancer progression cell lines
    Friedman, A. E.
    Lapek, J. D., Jr.
    Jensen, L.
    Williams, K.
    Ricke, W. A.
    BJU INTERNATIONAL, 2007, 100 : 25 - 25
  • [42] Predictor c: A tissue-based IVD predicting progression of disease in colorectal cancer UICC stages II or III
    Adams, H.
    Hinzmann, B.
    Mayr, T.
    Klaman, I.
    Rosenthal, A.
    JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (15)
  • [43] A MULTIPARAMETRIC MOLECULAR CLASSIFIER FOR IMPROVED PREDICTION OF PROSTATE CANCER PROGNOSIS
    Pompe, Raisa
    Kraft, Stefan
    Gild, Philipp
    Kluth, Martina
    Simon, Ronald
    Tennstedt, Pierre
    Graefen, Markus
    Sauter, Guido
    Schlomm, Thorsten
    JOURNAL OF UROLOGY, 2015, 193 (04): : E441 - E441
  • [44] A Multiparametric Molecular Classifier for Improved Prediction of Prostate Cancer Prognosis
    Kraft, Stefan
    Kluth, Martina
    Schlomm, Thorsten
    Simon, Ronald
    Sauter, Guido
    MODERN PATHOLOGY, 2015, 28 : 236A - 236A
  • [45] A Multiparametric Molecular Classifier for Improved Prediction of Prostate Cancer Prognosis
    Kraft, Stefan
    Kluth, Martina
    Schlomm, Thorsten
    Simon, Ronald
    Sauter, Guido
    LABORATORY INVESTIGATION, 2015, 95 : 236A - 236A
  • [46] Fibromodulin expression in human prostate cancer tissue: Implications for prostate cancer progression
    Padron, Estebana Ines Benedetti
    De Marzo, Angelo
    Del Valle, Javier Baena
    Geliebter, Jan
    Reyes, Niradiz
    CANCER RESEARCH, 2017, 77
  • [47] Tissue-based multigene expression tests for pretreatment prostate cancer risk assessment: current status and future perspectives
    Hiser, Wesley M.
    Sangiorgio, Valentina
    Bollito, Enrico
    Esnakula, Ashwini
    Feely, Michael
    Falzarano, Sara M.
    FUTURE ONCOLOGY, 2018, 14 (29) : 3073 - 3083
  • [48] Prohibitin: a potential biomarker for tissue-based detection of gastric cancer
    Kang, Xiangdong
    Zhang, Long
    Sun, Jian
    Ni, Zhenhua
    Ma, Yanchun
    Chen, Xiaobo
    Sheng, Xia
    Chen, Teng
    JOURNAL OF GASTROENTEROLOGY, 2008, 43 (08) : 618 - 625
  • [49] Adapting Imaging Mass Cytometry to Explore Renal Allograft Inflammation and Develop a Tissue-Based Classifier
    Alexander, M. P.
    Zaidi, M.
    Bentall, A.
    Stegall, M.
    Mckee, T.
    Pavelko, K.
    Taner, T.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2023, 23 (06) : S454 - S455
  • [50] Proteomic analysis of formalin-fixed prostate cancer tissue
    Hood, BL
    Darfler, MM
    Guiel, TG
    Furusato, B
    Lucas, DA
    Ringeisen, BR
    Sesterhenn, IA
    Conrads, TP
    Veenstra, TD
    Krizman, DB
    MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (11) : 1741 - 1753