The multipliers between the mixed norm spaces in Cn

被引:43
|
作者
Zhang, XJ [1 ]
Xiao, JB
Hu, ZJ
机构
[1] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410006, Hunan, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Sci, Hangzhou 310037, Zhejiang, Peoples R China
[3] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
pointwise multiplier; mixed norm space; Bergman space; unit ball;
D O I
10.1016/j.jmaa.2005.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the pointwise multipliers between the mixed norm spaces on the unit ball of C-n. For normal functions phi(1) and phi(2), we give several full characterizations of the pointwise multipliers M(H(p, q, phi(1)), H(p, q, phi(2))) for 0 < p <= infinity, 0 < q <= infinity and M(H(p, p, phi(1)), H (q, q, phi(2))) for 0 < p < infinity, 0 < q < infinity. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:664 / 674
页数:11
相关论文
共 50 条
  • [41] Mixed Norm Inequalities for Lebesgue Spaces
    Jain, Pankaj
    Kumari, Santosh
    Singh, Monika
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2020, 90 (05) : 783 - 787
  • [42] CESARO EXPONENTS OF MIXED NORM SPACES
    Chen, Bonan
    Cheng, Guozheng
    Fang, Xiang
    Liu, Chao
    Yu, Tao
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (09) : 3935 - 3948
  • [43] Mixed Norm Inequalities for Lebesgue Spaces
    Pankaj Jain
    Santosh Kumari
    Monika Singh
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2020, 90 : 783 - 787
  • [44] The Mixed Norm Spaces of Polyharmonic Functions
    Zhangjian Hu
    Miroslav Pavlović
    Xuejun Zhang
    Potential Analysis, 2007, 27 : 167 - 182
  • [45] The diagonal mapping in mixed norm spaces
    Ren, GB
    Shi, JH
    STUDIA MATHEMATICA, 2004, 163 (02) : 103 - 117
  • [46] Remarks on weighted mixed norm spaces
    Blasco, Oscar
    TOPICS IN COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 561 : 137 - 154
  • [47] IMBEDDING THEOREMS FOR SPACES WITH A MIXED NORM
    GUDIEV, AK
    DOKLADY AKADEMII NAUK SSSR, 1966, 166 (03): : 522 - &
  • [48] The mixed norm spaces of polyharmonic functions
    Hu, Zhangjian
    Pavlovic, Miroslav
    Zhang, Xuejun
    POTENTIAL ANALYSIS, 2007, 27 (02) : 167 - 182
  • [49] Mixed norm spaces and RM(p, q) spaces
    Tanausú Aguilar-Hernández
    Revista Matemática Complutense, 2024, 37 : 435 - 445
  • [50] Randomization in Generalized Mixed Norm Spaces
    Karapetrovic, Boban
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (02)