CNT@Cu3(BTC)2 and Metal-Organic Frameworks for Separation of CO2/CH4 Mixture

被引:152
|
作者
Xiang, Zhonghua [1 ]
Peng, Xuan [2 ]
Cheng, Xuan [1 ]
Li, Xiujin [3 ]
Cao, Dapeng [1 ]
机构
[1] Beijing Univ Chem Technol, Div Mol & Mat Simulat, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Coll Informat Sci, Beijing 100029, Peoples R China
[3] Beijing Univ Chem Technol, Dept Environm Engn, Beijing 100029, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2011年 / 115卷 / 40期
关键词
CARBON-DIOXIDE; HYDROGEN STORAGE; HIGH-CAPACITY; ACTIVATED CARBON; METHANE STORAGE; GAS-MIXTURES; ADSORPTION; CO2; SIMULATION; CH4;
D O I
10.1021/jp206959k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effectively separating CO2 from the natural gas, which is one of alternative "friendly" fuels, is a very important issue. A hybrid material CNT@Cu-3(BTC)(2) has been prepared to separate CO2 from the CO2/CH4 mixture. For comparison of separation efficiency, a series of representative metal organic frameworks (MOF-177, UMCM-1, ZIF-8, MIL-53 (Al), and Cu-3(BTC)(2)) have also been synthesized by the solvothermal method. Adsorption isotherms of CO2 and CH4 pure gases are measured by Hiden Isochema Intelligent Gravimetric Analyzer (IGA-003). The dual-site Langmuir-Freundlich (DSLF)-based ideal adsorption solution theory (IAST) is used to predict adsorption of each component in the CO2/CH4 mixture. The IAST-predicted results show that the hybrid material CNT@Cu-3(BTC)(2) exhibits the greatest selectivity among the six materials, and its selectivity keeps in the range of 5.5 to 7.0 for equimolar CO2/CH4 mixture at 1 < p < 20 bar, which is higher than activated carbons. Moreover, the selectivity of CNT@Cu-3(BTC)(2) for the CO2/CH4 mixture keeps almost no change with the composition of CH4, which is one of the excellent properties as a promising separation material. In short, this hybrid material CNT@Cu-3(BTC)(2) shows great potential in separation and purification of CO2 from various CO2/CH4 mixtures by adsorptive processes in important industrial systems.
引用
收藏
页码:19864 / 19871
页数:8
相关论文
共 50 条
  • [31] CO, CO2 and CH4 Gas Adsorption (Pure and Binary) on Cu-BTC and MIL-101 Metal Organic Frameworks (MOFs)
    Chowdhury, Pradip
    NANOTECHNOLOGY 2012, VOL 3: BIO SENSORS, INSTRUMENTS, MEDICAL, ENVIRONMENT AND ENERGY, 2012, : 521 - 524
  • [32] pH-Induced Two Co (II) Metal-Organic Frameworks with Different Topologies: Magnetism and CO2/CH4 Separation
    Zhang, Yujuan
    Zhang, Yaqing
    Zhang, Xiutang
    Hu, Tuoping
    CRYSTAL GROWTH & DESIGN, 2024, 24 (16) : 6673 - 6681
  • [33] Preparation and Adsorption Performance of GrO@Cu-BTC for Separation of CO2/CH4
    Huang, Wenyu
    Zhou, Xin
    Xia, Qibin
    Peng, Junjie
    Wang, Haihui
    Li, Zhong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (27) : 11176 - 11184
  • [34] Utilizing metal-organic frameworks for CO2 separation
    Farha, Omar K.
    Hupp, Joseph T.
    Wilmer, Christopher E.
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [35] Adsorption of CH4 and CO2 on Zr-metal organic frameworks
    Abid, Hussein Rasool
    Pham, Gia Hung
    Ang, Ha-Ming
    Tade, Moses O.
    Wang, Shaobin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2012, 366 (01) : 120 - 124
  • [36] Review on the synergistic effect between metal-organic frameworks and gas hydrates for CH4 storage and CO2 separation applications
    Wang, Pengfei
    Teng, Ying
    Zhu, Jinlong
    Bao, Wancheng
    Han, Songbai
    Li, Yun
    Zhao, Yusheng
    Xie, Heping
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [37] In-situ construction of ionic ultramicroporous metal-organic frameworks for high-efficiency CO2/CH4 separation
    Zhang, Yuke
    Huang, Yi
    Chen, Shangqing
    Shi, Lijuan
    Wang, Jiancheng
    Yi, Qun
    Pei, Feng
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [38] Li-modified metal-organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity
    Xu, Qing
    Liu, Dahuan
    Yang, Qingyuan
    Zhong, Chongli
    Mi, Jianguo
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (04) : 706 - 714
  • [39] Adsorption of CO, CO2 and CH4 on Cu-BTC and MIL-101 metal organic frameworks: Effect of open metal sites and adsorbate polarity
    Chowdhury, Pradip
    Mekala, Samuel
    Dreisbach, Frieder
    Gumma, Sasidhar
    MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 152 : 246 - 252
  • [40] Introducing two-dimensional metal-organic frameworks with axial coordination anion into Pebax for CO2/CH4 separation
    Gou, Minmin
    Zhu, Weifang
    Sun, Yanyong
    Guo, Ruili
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 259