Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite

被引:69
|
作者
Jiang, Mei-Juan [1 ,2 ]
Dang, Zhi-Min [1 ,2 ]
Xu, Hal-Ping [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, Key Lab Beijing City Preparat & Proc Novel Polyme, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Key Lab Minist Educ Nanomat, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
conductivity; modification; MWNT; VMQ; nanocomposite;
D O I
10.1016/j.eurpolymj.2007.09.022
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Chemically modified multiwalled carbon nanotubes/methlyvinyl silicone rubber (m-MWNT/VMQ) nanocomposites with relatively good dispersion of nanotubes were prepared by treating the surface of MWNT using gamma-aminopropyltriethoxy silane (KH550). Significant enhanced electrical conductivity was discovered in the m-MWNT/VMQ nanocomposites. The results could be attributed a strong interaction between m-MWNT and VMQ which was from the chemically modification of the surface for MWNT. The electrical property was also discussed in order to understand the percolation and electrical transport mechanism. The m-MWNT/VMQ nanocomposites with high conductivity in this study are promising application as one of novel functional materials. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4924 / 4930
页数:7
相关论文
共 50 条
  • [41] Impact of Electric Field Application During Curing on Epoxy-Carbon Nanotube Nanocomposite Electrical Conductivity
    I. Hattenhauer
    P. P. Tambosi
    C. A. Duarte
    L. A. F. Coelho
    A. Ramos
    S. H. Pezzin
    Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25 : 627 - 634
  • [42] Impact of Electric Field Application During Curing on Epoxy-Carbon Nanotube Nanocomposite Electrical Conductivity
    Hattenhauer, I.
    Tambosi, P. P.
    Duarte, C. A.
    Coelho, L. A. F.
    Ramos, A.
    Pezzin, S. H.
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2015, 25 (04) : 627 - 634
  • [43] Piezoresistive behavior of graphene nanoplatelets/carbon black/silicone rubber nanocomposite
    Huang, Y. (hf.hy@163.com), 1600, John Wiley and Sons Inc (131):
  • [44] Electrical conductivity and positron annihilation characteristics of ternary silicone rubber/carbon black/TiB2 nanocomposites
    Ismail, A. M.
    Mahmoud, K. R.
    Abd-El Salam, M. H.
    POLYMER TESTING, 2015, 48 : 37 - 43
  • [45] The electrical conductivity and EMI shielding properties of polyurethane foam/silicone rubber/carbon black/nanographite hybrid composites
    Jeddi, Javad
    Katbab, Ali Asghar
    POLYMER COMPOSITES, 2018, 39 (10) : 3452 - 3460
  • [46] Effect of carbon nanotube type and length on the electrical conductivity of carbon nanotube polymer nanocomposites
    Elaskalany, Mostafa
    Behdinan, Kamran
    MATERIALS RESEARCH EXPRESS, 2023, 10 (10)
  • [47] Effect of fabrication method on the physical properties of carbon-nanotube/silicone-rubber nanocomposite in high-voltage insulators
    Mohammadnabi, Saman
    Rahmani, Khosrow
    JOURNAL OF COMPOSITE MATERIALS, 2023, 57 (11) : 1959 - 1968
  • [48] Marine Fouling Release Silicone/Carbon Nanotube Nanocomposite Coatings: On the Importance of the Nanotube Dispersion State
    Beigbeder, Alexandre
    Mincheva, Rosica
    Pettitt, Michala E.
    Callow, Maureen E.
    Callow, James A.
    Claes, Michael
    Dubois, Philippe
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (05) : 2972 - 2978
  • [49] Nanocomposite based on modified multiwalled carbon nanotubes: Fabrication by an oriented spinning process and electrical conductivity
    A. A. Babaev
    P. P. Khokhlachev
    Yu. A. Nikolaev
    E. I. Terukov
    A. B. Freidin
    R. A. Filippov
    A. K. Filippov
    N. K. Manabaev
    Inorganic Materials, 2012, 48 : 997 - 1000
  • [50] Nanocomposite based on modified multiwalled carbon nanotubes: Fabrication by an oriented spinning process and electrical conductivity
    Babaev, A. A.
    Khokhlachev, P. P.
    Nikolaev, Yu. A.
    Terukov, E. I.
    Freidin, A. B.
    Filippov, R. A.
    Filippov, A. K.
    Manabaev, N. K.
    INORGANIC MATERIALS, 2012, 48 (10) : 997 - 1000