Automatic Tissue Segmentation with Deep Learning in Patients with Congenital or Acquired Distortion of Brain Anatomy

被引:2
|
作者
Amorosino, Gabriele [1 ,2 ]
Peruzzo, Denis [3 ]
Astolfi, Pietro [1 ,4 ]
Redaelli, Daniela [3 ]
Avesani, Paolo [1 ,2 ]
Arrigoni, Filippo [3 ]
Olivetti, Emanuele [1 ,2 ]
机构
[1] Bruno Kessler Fdn, NeuroInformat Lab NILab, Trento, Italy
[2] Univ Trento, Ctr Mind & Brain Sci CIMeC, Rovereto, TN, Italy
[3] Sci Inst IRCCS Eugenio Medea, Neuroimaging Lab, Lecce, Italy
[4] Italian Inst Technol IIT, PAVIS, Genoa, Italy
来源
MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020 | 2020年 / 12449卷
关键词
MRI;
D O I
10.1007/978-3-030-66843-3_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brains with complex distortion of cerebral anatomy present several challenges to automatic tissue segmentation methods of T1-weighted MR images. First, the very high variability in the morphology of the tissues can be incompatible with the prior knowledge embedded within the algorithms. Second, the availability of MR images of distorted brains is very scarce, so the methods in the literature have not addressed such cases so far. In this work, we present the first evaluation of state-of-the-art automatic tissue segmentation pipelines on T1-weighted images of brains with different severity of congenital or acquired brain distortion. We compare traditional pipelines and a deep learning model, i.e. a 3D U-Net trained on normal-appearing brains. Unsurprisingly, traditional pipelines completely fail to segment the tissues with strong anatomical distortion. Surprisingly, the 3D U-Net provides useful segmentations that can be a valuable starting point for manual refinement by experts/neuroradiologists.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 50 条
  • [21] A deep learning approach to the automatic segmentation of electrocardiograms
    Raaijmakers, F.
    Vessies, M.
    van de Leur, R.
    Schipaanboord, D.
    Echavarria, A.
    Schuurbiers, M.
    ten Broeke, J.
    van Es, R.
    EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2023, 53
  • [22] Automatic Segmentation and Deep Learning of Bird Sounds
    Koops, Hendrik Vincent
    van Balen, Jan
    Wiering, Frans
    EXPERIMENTAL IR MEETS MULTILINGUALITY, MULTIMODALITY, AND INTERACTION, 2015, 9283 : 261 - 267
  • [23] Deep Learning-Based Multiclass Brain Tissue Segmentation in Fetal MRIs
    Huang, Xiaona
    Liu, Yang
    Li, Yuhan
    Qi, Keying
    Gao, Ang
    Zheng, Bowen
    Liang, Dong
    Long, Xiaojing
    SENSORS, 2023, 23 (02)
  • [24] A survey of MRI-based brain tissue segmentation using deep learning
    Wu, Liang
    Wang, Shirui
    Liu, Jun
    Hou, Lixia
    Li, Na
    Su, Fei
    Yang, Xi
    Lu, Weizhao
    Qiu, Jianfeng
    Zhang, Ming
    Song, Li
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (01)
  • [25] Automatic segmentation of MRI images for brain radiotherapy planning using deep ensemble learning
    Yoganathan, S. A.
    Torfeh, Tarraf
    Paloor, Satheesh
    Hammoud, Rabih
    Al-Hammadi, Noora
    Zhang, Rui
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (02):
  • [26] Deep Learning-Based Automatic Segmentation for Brain OARs: Accuracy and Dosimetric Impact
    Turcas, A.
    Gheara, C.
    Leucuta, D.
    Balan, C.
    Dana, C.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1346 - S1348
  • [27] Automatic segmentation of brain tumour in MR images using an enhanced deep learning approach
    Tripathi, Sumit
    Verma, Ashish
    Sharma, Neeraj
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2021, 9 (02): : 121 - 130
  • [28] EDLNet: ensemble deep learning network model for automatic brain tumor classification and segmentation
    Vinta, Surendra Reddy
    Chintalapati, Phaneendra Varma
    Babu, Gurujukota Ramesh
    Tamma, Rajyalakshmi
    Kumar, Gunupudi Sai Chaitanya
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2024,
  • [29] Enhanced Deep Learning Framework for Automatic MRI Brain Tumor Segmentation with Data Augmentation
    Chamseddine, Ekram
    Tlig, Lotfi
    Sayadi, Mounir
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 409 - 413
  • [30] Automatic segmentation of deep endometriosis in the rectosigmoid using deep learning
    Figueredo, Weslley Kelson Ribeiro
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Diniz, Joao Otavio Bandeira
    Brandao, Alice
    Oliveira, Marco Aurelio Pinho
    IMAGE AND VISION COMPUTING, 2024, 151