Geometrical phase imprinted on eigenfunctions near an exceptional point

被引:9
|
作者
Lee, Soo-Young [1 ]
机构
[1] Seoul Natl Univ, Sch Phys & Astron, Seoul 151742, South Korea
来源
PHYSICAL REVIEW A | 2010年 / 82卷 / 06期
关键词
Geometry;
D O I
10.1103/PhysRevA.82.064101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We illustrate how to get the geometric phase from eigenfunctions in the vicinity of an exceptional point in a dielectric microcavity whose non-Hermitian character comes from the outgoing-wave boundary condition. It is shown that the geometrical phase +/-pi can be obtained either from total variation of the inner product of eigenfunctions or from a continuous change of phase plot, not of intensity plot, during a double cyclic parameter variation encircling the exceptional point. One can use either of the two ways by properly choosing the arbitrary phase of the calculated eigenfunctions.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] On vanishing near corners of transmission eigenfunctions
    Blasten, Eemeli
    Liu, Hongyu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (11) : 3616 - 3632
  • [32] ON GEOMETRICAL PROPERTIES OF ELECTROMAGNETIC TRANSMISSION EIGENFUNCTIONS AND ARTIFICIAL MIRAGE\ast
    Deng, Youjun
    Liu, Hongyu
    Wang, Xianchao
    Wu, Wei
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (01) : 1 - 24
  • [33] Modulation Response of Coupled Microcavity Laser Array Operated Near Modal Exceptional Point
    Dave, Harshil
    Gao, Zihe
    Choquette, Kent D.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [34] Gap electroacoustic waves in PT-symmetric piezoelectric heterostructure near the exceptional point
    Vilkov, E. A.
    Byshevski-Konopko, O. A.
    Kalyabin, D., V
    Nikitov, S. A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2023, 35 (43)
  • [35] Extremely asymmetric absorption and reflection near the exceptional point for three-dimensional metamaterial
    Wu, Yanjie
    Zhang, Ding
    Li, Qiuyu
    Lin, Hai
    Shi, Xintong
    Xiong, Jie
    Hu, Haoquan
    Tian, Jing
    Wu, Bian
    Liu, Y.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (36)
  • [36] Chaotic eigenfunctions in phase space
    Nonnenmacher, S
    Voros, A
    JOURNAL OF STATISTICAL PHYSICS, 1998, 92 (3-4) : 431 - 518
  • [37] Eye Accommodation, Near Vision, and Far Vision from a Geometrical Optics Point of View
    Asadollahi, Zahra
    Andrianarijaona, Vola M.
    PHYSICS TEACHER, 2021, 59 (06): : 417 - 419
  • [38] Quantum phase transition revealed by the exceptional point in a Hopfield-Bogoliubov matrix
    Xie, Dong
    Xu, Chunling
    Wang, An Min
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [39] Using eigenfunctions of the two-point correlation function to study convection with multiple phase transformations
    King, SD
    Balachandar, S
    Ita, JJ
    GEOPHYSICAL RESEARCH LETTERS, 1997, 24 (06) : 703 - 706
  • [40] Chaotic Eigenfunctions in Phase Space
    S. Nonnenmacher
    A. Voros
    Journal of Statistical Physics, 1998, 92 : 431 - 518