Reduced material loss in thin-film lithium niobate waveguides

被引:54
|
作者
Shams-Ansari, Amirhassan [1 ]
Huang, Guanhao [2 ]
He, Lingyan [3 ]
Li, Zihan [2 ]
Holzgrafe, Jeffrey [1 ]
Jankowski, Marc [4 ,5 ]
Churaev, Mikhail [2 ]
Kharel, Prashanta
Cheng, Rebecca [1 ]
Zhu, Di [1 ]
Sinclair, Neil [1 ]
Desiatov, Boris [1 ]
Zhang, Mian
Kippenberg, Tobias J. [2 ]
Loncar, Marko [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, 29 Oxford St, Cambridge, MA 02138 USA
[2] Swiss Fed Inst Technol Lausanne EPFL, Inst Phys, CH-1015 Lausanne, Switzerland
[3] HyperLight, 501 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Stanford Univ, EL Ginzton Lab, 348 Via Pueblo Mall, Stanford, CA 94305 USA
[5] NTT Res Inc, Phys & Informat Labs, 940 Stewart Dr, Sunnyvale, CA 94085 USA
基金
瑞士国家科学基金会;
关键词
GENERATION;
D O I
10.1063/5.0095146
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Thin-film lithium niobate has shown promise for scalable applications ranging from single-photon sources to high-bandwidth data communication systems. Realization of the next generation high-performance classical and quantum devices, however, requires much lower optical losses than the current state of the art resonator (Q-factor of similar to 10 x 10(6)million). Yet the material limitations of ion-sliced thin film lithium niobate have not been explored; therefore, it is unclear how high the quality factor can be achieved in this platform. Here, using our newly developed characterization method, we find out that the material limited quality factor of thin film lithium niobate photonic platform can be improved using post-fabrication annealing and can be as high as Q approximate to 1.6 x 10(8) at telecommunication wavelengths, corresponding to a propagation loss of 0.2 dB/m. (C) 2022 Author(s).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Thin-film lithium niobate waveguides for quantum photonics
    Fejer, M. M.
    QUANTUM COMPUTING, COMMUNICATION, AND SIMULATION IV, 2024, 12911
  • [2] Towards noncritical phasematching in thin-film lithium niobate waveguides
    Kuo, Paulina S.
    NONLINEAR FREQUENCY GENERATION AND CONVERSION: MATERIALS AND DEVICES XXI, 2022, 11985
  • [3] Heterogeneous Integration of Thin-Film Lithium Niobate and Chalcogenide Waveguides on Silicon
    Hanardoost, A.
    Khan, S.
    Gonzalez, G. F. Camacho
    Tremblay, J. -E.
    Yadav, A.
    Richardson, K. A.
    Wu, M. C.
    Fathpour, S.
    30TH ANNUAL CONFERENCE OF THE IEEE PHOTONICS SOCIETY (IPC), 2017, : 545 - 546
  • [4] Rejuvenating a Versatile Photonic Material: Thin-Film Lithium Niobate
    Honardoost, Amirmahdi
    Abdelsalam, Kamal
    Fathpour, Sasan
    LASER & PHOTONICS REVIEWS, 2020, 14 (09)
  • [5] Acoustic Loss in Thin-Film Lithium Niobate: An Experimental Study
    Lu, Ruochen
    Yang, Yansong
    Gong, Songbin
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2021, 30 (04) : 632 - 641
  • [6] Reduced material loss caused by Electron Beam Lithography in thin-film lithium niobate through post-process annealing
    Shi, Jiakang
    Ye, Zhilin
    Lv, Mengcheng
    Ge, Daohan
    Zhang, Liqiang
    Zhu, Shining
    Cui, Guoxin
    OPTICAL MATERIALS, 2024, 149
  • [7] Hybrid silica and thin-film lithium niobate waveguides and Y-junctions
    Wang, Yiwen
    Sun, Xiaowei
    Zhang, Honghu
    Hu, Hui
    RESULTS IN PHYSICS, 2023, 53
  • [8] Optical diagnostic methods for monitoring the poling of thin-film lithium niobate waveguides
    Zhao, Jie
    Rusing, Michael
    Mookherjea, Shayan
    OPTICS EXPRESS, 2019, 27 (09) : 12025 - 12038
  • [9] Approaching the adiabatic infimum of topological pumps on thin-film lithium niobate waveguides
    Shengjie Wu
    Wange Song
    Jiacheng Sun
    Jian Li
    Zhiyuan Lin
    Xuanyu Liu
    Shining Zhu
    Tao Li
    Nature Communications, 15 (1)
  • [10] Low-Harmonic Generation in Cascaded Thin-Film Lithium Niobate Waveguides
    Sjaardema, Tracy
    Malinowski, Marcin
    Rao, Ashutosh
    Fathpour, Sasan
    ADVANCED PHOTONICS RESEARCH, 2022, 3 (07):