Structural stability of generalized Forchheimer equations for compressible fluids in porous media

被引:37
|
作者
Hoang, Luan [1 ]
Ibragimov, Akif [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
CONTINUOUS DEPENDENCE; BRINKMAN; FLOW; CONVERGENCE; DERIVATION; MODELS;
D O I
10.1088/0951-7715/24/1/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the generalized Forchheimer equations for slightly compressible fluids in porous media. The structural stability is established with respect to either the boundary data or the coefficients of the Forchheimer polynomials. A weighted Poincare-Sobolev inequality related to the nonlinearity of the equation is used to study the asymptotic behaviour of the solutions. Moreover, we prove a perturbed monotonicity property of the vector field associated with the resulting non-Darcy equation, where the correction is explicit and Lipschitz continuous in the coefficients of the Forchheimer polynomials.
引用
收藏
页码:1 / 41
页数:41
相关论文
共 50 条
  • [31] Interface Stability of Compressible Fluid Displacements in Porous Media
    Yuzheng Lan
    David DiCarlo
    Larry W. Lake
    Transport in Porous Media, 2022, 144 : 699 - 713
  • [32] An expanded mixed finite element method for generalized Forchheimer flows in porous media
    Ibragimov, Akif
    Kieu, Thinh T.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (06) : 1467 - 1483
  • [33] GENERALIZED TIME-PERIODIC SOLUTIONS TO THE EULER EQUATIONS OF COMPRESSIBLE FLUIDS
    Georgiev, Svetlin
    LeFloch, Philippe G.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2009, 1 (03): : 413 - 426
  • [34] Existence of a solution for generalized Forchheimer flow in porous media with minimal regularity conditions
    Kieu, Thinh
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)
  • [35] Stochastic generalized porous media equations with reflection
    Roeckner, Michael
    Wang, Feng-Yu
    Zhang, Tusheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (11) : 3943 - 3962
  • [36] GENERALIZED CONSTITUTIVE PARAMETERS AND GOVERNING EQUATIONS FOR COMPRESSIBLE ANISOTROPIC MEDIA
    CHENG, DK
    CHEN, HC
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1965, 53 (07): : 759 - &
  • [37] Global solvability of the equations for compressible miscible flows in porous media
    V. V. Shelukhin
    Y. Amirat
    Doklady Mathematics, 2007, 75 : 390 - 394
  • [38] Global solvability of the equations for compressible miscible flows in porous media
    Shelukhin, V. V.
    Amirat, Y.
    DOKLADY MATHEMATICS, 2007, 75 (03) : 390 - 394
  • [39] Compressible generalized Newtonian fluids
    Malek, J.
    Rajagopal, K. R.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06): : 1097 - 1110
  • [40] Compressible generalized Newtonian fluids
    J. Málek
    K. R. Rajagopal
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 1097 - 1110