Solving elliptic interface problems with jump conditions on Cartesian grids

被引:29
|
作者
Bochkov, Daniil [1 ]
Gibou, Frederic [1 ,2 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
关键词
Poisson equation; Immersed interface; Level-set method; EMBEDDED BOUNDARY METHOD; FINITE-ELEMENT-METHOD; IRREGULAR DOMAINS; POISSONS-EQUATION; ARBITRARY DISCONTINUITIES; IMMERSED BOUNDARY; MULTIGRID METHODS; HEAT-EQUATIONS; DISCRETIZATION; ALGORITHMS;
D O I
10.1016/j.jcp.2020.109269
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a simple numerical algorithm for solving elliptic equations where the diffusion coefficient, the source term, the solution and its flux are discontinuous across an irregular interface. The algorithm produces second-order accurate solutions and first-order accurate gradients in the L-infinity-norm on Cartesian grids. The condition number is bounded, regardless of the ratio of the diffusion constant and scales like that of the standard 5-point stencil approximation on a rectangular grid with no interface. Numerical examples are given in two and three spatial dimensions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Weak Formulation for Solving the Elliptic Interface Problems with Imperfect Contact
    Wang, Liqun
    Hou, Songming
    Shi, Liwei
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (05) : 1189 - 1205
  • [22] A Partially Penalised Immersed Finite Element Method for Elliptic Interface Problems with Non-Homogeneous Jump Conditions
    Ji, Haifeng
    Zhang, Qian
    Wang, Qiuliang
    Xie, Yifan
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 1 - 23
  • [23] A generalized finite difference method for solving elliptic interface problems
    Xing, Yanan
    Song, Lina
    He, Xiaoming
    Qiu, Changxin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 178 : 109 - 124
  • [24] A finite volume scheme for solving elliptic boundary value problems on composite grids
    M. J. H. Anthonissen
    B. van ’t Hof
    A. A. Reusken
    Computing, 1998, 61 : 285 - 305
  • [25] Finite volume scheme for solving elliptic boundary value problems on composite grids
    Anthonissen, M.J.H.
    van't Hof, B.
    Reusken, A.A.
    Computing (Vienna/New York), 1998, 61 (04): : 285 - 305
  • [26] A finite volume scheme for solving elliptic boundary value problems on composite grids
    Anthonissen, MJH
    van't Hof, B
    Reusken, AA
    COMPUTING, 1998, 61 (04) : 285 - 305
  • [27] A second-order Cartesian grid finite volume technique for elliptic interface problems
    Kandilarov, Juri D.
    Koleva, Miglena N.
    Vulkov, Lubin G.
    LARGE-SCALE SCIENTIFIC COMPUTING, 2008, 4818 : 679 - 687
  • [28] A new Petrov–Galerkin immersed finite element method for elliptic interface problems with non-homogeneous jump conditions
    Zhongliang Tang
    Yu Zheng
    Liqun Wang
    Quanxiang Wang
    Journal of Engineering Mathematics, 2023, 141
  • [29] A second order Cartesian finite volume method for elliptic interface and embedded Dirichlet problems
    Latige, M.
    Colin, T.
    Galile, G.
    COMPUTERS & FLUIDS, 2013, 83 : 70 - 76
  • [30] A Correction Function Method for Poisson problems with interface jump conditions
    Marques, Alexandre Noll
    Nave, Jean-Christophe
    Rosales, Rodolfo Ruben
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (20) : 7567 - 7597