Continuous-time quantum walks on the threshold network model

被引:4
|
作者
Ide, Yusuke [1 ]
Konno, Norio [2 ]
机构
[1] Kanagawa Univ, Fac Engn, Dept Informat Syst Creat, Kanagawa Ku, Yokohama, Kanagawa 2218686, Japan
[2] Yokohama Natl Univ, Fac Engn, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
基金
日本学术振兴会;
关键词
GRAPHS;
D O I
10.1017/S0960129510000381
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is well known that many real world networks have a power-law degree distribution (the scale-free property). However, there are no rigorous results for continuous-time quantum walks on such realistic graphs. In this paper, we analyse the space-time behaviour of continuous-time quantum walks and random walks on the threshold network model, which is a reasonable candidate model having the scale-free property. We show that the quantum walker exhibits localisation at the starting point, although the random walker tends to spread uniformly.
引用
收藏
页码:1079 / 1090
页数:12
相关论文
共 50 条
  • [21] Transport Efficiency of Continuous-Time Quantum Walks on Graphs
    Razzoli, Luca
    Paris, Matteo G. A.
    Bordone, Paolo
    ENTROPY, 2021, 23 (01) : 1 - 25
  • [22] Mixing and decoherence in continuous-time quantum walks on cycles
    Center for Quantum Device Technology, Department of Physics, Clarkson University, Potsdam, NY 13699, United States
    不详
    不详
    Quantum Inf. Comput., 2006, 3 (263-276):
  • [23] Link prediction with continuous-time classical and quantum walks
    Goldsmith, Mark
    García-Pérez, Guillermo
    Malmi, Joonas
    Rossi, Matteo A.C.
    Saarinen, Harto
    Maniscalco, Sabrina
    arXiv, 2022,
  • [24] Continuous-time quantum walks on multilayer dendrimer networks
    Galiceanu, Mircea
    Strunz, Walter T.
    PHYSICAL REVIEW E, 2016, 94 (02)
  • [25] Decoherence and classicalization of continuous-time quantum walks on graphs
    Gabriele Bressanini
    Claudia Benedetti
    Matteo G. A. Paris
    Quantum Information Processing, 21
  • [26] One-Dimensional Continuous-Time Quantum Walks
    ben-Avraham, D.
    Bollt, E. M.
    Tamon, C.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 295 - 308
  • [27] Physical realizability of continuous-time quantum stochastic walks
    Taketani, Bruno G.
    Govia, Luke C. G.
    Wilhelm, Frank K.
    PHYSICAL REVIEW A, 2018, 97 (05)
  • [28] One-Dimensional Continuous-Time Quantum Walks
    D. ben-Avraham
    E.M. Bollt
    C. Tamon
    Quantum Information Processing, 2004, 3 : 295 - 308
  • [29] Simplifying continuous-time quantum walks on dynamic graphs
    Herrman, Rebekah
    Wong, Thomas G.
    QUANTUM INFORMATION PROCESSING, 2022, 21 (02)
  • [30] Detecting factorization effect in continuous-time quantum walks
    Jin-Hui Zhu
    Li-Hua Lu
    You-Quan Li
    EPJ Quantum Technology, 2021, 8