Idealized model simulations with an isolated elliptical lake and prescribed winter lake-effect environmental conditions were used to examine the influences of lake shape, wind speed, and wind direction on the mesoscale morphology. This study presents the first systematic examination of variations in lake shape and the interplay between these three parameters. The array of 21 model simulations produced cases containing each of the three classic lake-effect morphologies (i.e., vortices, shoreline bands, and widespread coverage), and, in some instances, the mesoscale circulations were composed of coexisting morphologies located over the lake, near the downwind shoreline, or inland from the downwind shore. As with lake-effect circulations simulated over circular lakes, the ratio of wind speed ( U) to maximum fetch distance ( L) was found to be a valuable parameter for determining the morphology of a lake-effect circulation when variations of lake shape, wind speed, and wind direction were introduced. For a given elliptical lake and strong winds, a morphological transform from shoreline band toward widespread coverage accompanied changes in ambient flow direction from along to across the major lake axis. For simulations with weak winds over a lake with a large axis ratio, the morphology of the lake-effect circulation changed from vortex toward shoreline band with a change in wind direction from along to across the major lake axis. Weak winds across lakes with smaller axis ratios (i.e., 1: 1 or 3: 1) produced mesoscale vortices for each wind direction. Across the array of simulations, a shift in mesoscale lake-effect morphology from vortices to bands and bands toward widespread coverage was attended by an increase in U/L. Last, the elliptical-lake results suggest that the widths of the lake-effect morphological transition zones in U/L parameter space, conditions favorable for the coexistence of multiple morphologies, were greater than for circular lakes.