Sub-10 nm Au-Ag Heterogeneous Plasmonic Nanogaps

被引:14
|
作者
Gu, Panpan [1 ,4 ]
Zheng, Tianxing [1 ]
Zhang, Wei [1 ]
Ai, Bin [2 ]
Zhao, Zhiyuan [3 ]
Zhang, Gang [1 ]
机构
[1] Jilin Univ, Coll Chem, State Key Lab Supramol Struct & Mat, Changchun 130012, Peoples R China
[2] Chongqing Univ, Chongqing Key Lab Biopercept & Intelligent Inform, Sch Microelect & Commun Engn, Chongqing 400044, Peoples R China
[3] Yancheng Teachers Univ, Inst New Energy Chem Storage & Power Sources, Coll Appl Chem & Environm Engn, Yancheng 224002, Peoples R China
[4] Eastern Liaoning Univ, Dandong, Coll Chem Engn & Machinery, Dandong 118003, Peoples R China
来源
ADVANCED MATERIALS INTERFACES | 2020年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
heterogeneous nanogaps; nanoskiving; surface-enhanced Raman spectroscopy (SERS); surface plasmon resonance; ENHANCED RAMAN-SCATTERING; SUBNANOMETER GAPS; P-AMINOTHIOPHENOL; SILVER; NANOPARTICLES; SERS; NANOSTRUCTURES; LITHOGRAPHY; DIMERS;
D O I
10.1002/admi.201902021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Controlling the formation of bimetallic heterogeneous nanogaps structures have many applications in the plasmonics and catalysis fields. Here, a simple and systematic method is developed to fabricate tunable and stable Au-Ag nanowire-based plasmonic metamaterials. The sub-10 nm Au-Ag bimetallic heterogeneous nanogaps with desirable optical properties are fabricated by a simple, ultrarapid, and robust nanoskiving technique. Compared to the monometallic linear Ag-Ag and Au-Au nanogaps, the Au-Ag bimetallic heterogeneous nanogaps exhibit remarkable surface enhanced Raman spectroscopy (SERS) enhancement properties due to the nanogaps between the adjacent Au/Ag nanowires, and the Ag/Au bimetallic composite film. In addition, 3D bimetallic heterogeneous nanogaps are built and produce much stronger electric fields than those of the 1D linear nanogaps. The sub-10 nm Au-Ag heterogeneous nanogaps are promising to be used in SERS substrate, plasmon devices, catalysis, and printed electronics.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Design with Sub-10 nm FinFET Technologies
    Clark, Lawrence T.
    Vashishtha, Vinay
    2017 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE (CICC), 2017,
  • [32] Sub-10 nm imprint lithography and applications
    Chou, Stephen Y.
    Krauss, Peter R.
    Zhang, Wei
    Guo, Lingjie
    Zhuang, Lei
    Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1997, 15 (06):
  • [33] Sub-10 nm fabrication: methods and applications
    Yiqin Chen
    Zhiwen Shu
    Shi Zhang
    Pei Zeng
    Huikang Liang
    Mengjie Zheng
    Huigao Duan
    International Journal of Extreme Manufacturing, 2021, 3 (03) : 20 - 50
  • [34] Computational Sub-10 nm Plasmonic Nanogap Patterns by Block Copolymer Self-Assembly
    Kim, Sang-Kon
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2021, 16 (07) : 1063 - 1066
  • [35] Heterogeneous Nucleation of Supersaturated Water Vapor onto Sub-10 nm Nanoplastic Particles
    Wlasits, Peter J.
    Konrat, Ruth
    Winkler, Paul M.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (04) : 1584 - 1591
  • [36] Sub-10 nm Carbon Nanotube Transistor
    Franklin, Aaron D.
    Luisier, Mathieu
    Han, Shu-Jen
    Tulevski, George
    Breslin, Chris M.
    Gignac, Lynne
    Lundstrom, Mark S.
    Haensch, Wilfried
    NANO LETTERS, 2012, 12 (02) : 758 - 762
  • [37] Sub-10 nm imprint lithography and applications
    Chou, SY
    Krauss, PR
    Zhang, W
    Guo, LJ
    Zhuang, L
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1997, 15 (06): : 2897 - 2904
  • [38] Fluorescence nanoscopy at the sub-10 nm scale
    Masullo, Luciano A.
    Szalai, Alan M.
    Lopez, Lucia F.
    Stefani, Fernando D.
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1101 - 1112
  • [39] CMOS downsizing toward sub-10 nm
    Iwai, H
    SOLID-STATE ELECTRONICS, 2004, 48 (04) : 497 - 503
  • [40] Sub-10 nm fabrication: methods and applications
    Chen, Yiqin
    Shu, Zhiwen
    Zhang, Shi
    Zeng, Pei
    Liang, Huikang
    Zheng, Mengjie
    Duan, Huigao
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2021, 3 (03)