Post-translational Modifications of OLIG2 Regulate Glioma Invasion through the TGF-β Pathway

被引:45
|
作者
Singh, Shiv K. [1 ]
Fiorelli, Roberto [1 ]
Kupp, Robert [1 ]
Rajan, Sindhu [1 ]
Szeto, Emily [1 ]
Lo Cascio, Costanza [1 ]
Maire, Cecile L. [2 ]
Sun, Yu [3 ]
Alberta, John A. [3 ]
Eschbacher, Jennifer M. [4 ]
Ligon, Keith L. [2 ]
Berens, Michael E. [5 ]
Sanai, Nader [1 ]
Mehta, Shwetal [1 ]
机构
[1] St Josephs Hosp, Barrow Neurol Inst, Barrow Brain Tumor Res Ctr, Div Neurobiol, Phoenix, AZ 85013 USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Dept Pathol, Boston, MA 02115 USA
[3] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[4] St Josephs Hosp, Barrow Neurol Inst, Div Neuropathol, Phoenix, AZ 85013 USA
[5] Translat Genom Inst, Canc & Cell Biol Div, Phoenix, AZ 85004 USA
来源
CELL REPORTS | 2016年 / 16卷 / 04期
关键词
MALIGNANT GLIOMA; CELL-POPULATION; MIGRATION; BIOLOGY; GROWTH; PROGENITORS; GENETICS; NETWORK; TARGET; P53;
D O I
10.1016/j.celrep.2016.06.045
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In glioblastoma, invasion and proliferation are presumed to be mutually exclusive events; however, the molecular mechanisms that mediate this switch at the cellular level remain elusive. Previously, we have shown that phospho-OLIG2, a central-nervous-system-specific transcription factor, is essential for tumor growth and proliferation. Here, we show that the modulation of OLIG2 phosphorylation can trigger a switch between proliferation and invasion. Glioma cells with unphosphorylated OLIG2 (S10, S13, S14) are highly migratory and invasive, both in vitro and in vivo. Mechanistically, unphosphorylated OLIG2 induces TGF-beta 2 expression and promotes invasive mesenchymal properties in glioma cells. Inhibition of the TGF-beta 2 pathway blocks this OLIG2-dependent invasion. Furthermore, ectopic expression of phosphomimetic Olig2 is sufficient to block TGF-beta 2-mediated invasion and reduce expression of invasion genes (ZEB1 and CD44). Our results not only provide a mechanistic insight into how cells switch from proliferation to invasion but also offer therapeutic opportunities for inhibiting dissemination of gliomas.
引用
收藏
页码:950 / 966
页数:17
相关论文
共 50 条
  • [21] Do different post-translational modifications in tubulin regulate microtubule assembly?
    Banerjee, A
    Kasmala, LT
    MOLECULAR BIOLOGY OF THE CELL, 1998, 9 : 150A - 150A
  • [22] Post-translational modifications of the apelin receptor regulate its functional expression
    Kinjo, Toshihiko
    Ebisawa, Shun
    Nokubo, Tatsuya
    Hashimoto, Mifu
    Yamada, Takonori
    Oshio, Michiko
    Nakamura, Ruka
    Uno, Kyosuke
    Kuramoto, Nobuyuki
    AIMS NEUROSCIENCE, 2023, 10 (04) : 282 - 299
  • [23] Post-translational modifications of soluble α-synuclein regulate the amplification of pathological α-synuclein
    Shujing Zhang
    Ruowei Zhu
    Buyan Pan
    Hong Xu
    Modupe F. Olufemi
    Ronald J. Gathagan
    Yuanxi Li
    Luyan Zhang
    Jasmine Zhang
    Wenxuan Xiang
    Eliot Masahiro Kagan
    Xingjun Cao
    Chaoxing Yuan
    Soo-Jung Kim
    Christopher K. Williams
    Shino Magaki
    Harry V. Vinters
    Hilal A. Lashuel
    Benjamin A. Garcia
    E. James Petersson
    John Q. Trojanowski
    Virginia M.-Y. Lee
    Chao Peng
    Nature Neuroscience, 2023, 26 : 213 - 225
  • [24] Post-translational modifications of soluble α-synuclein regulate the amplification of pathological α-synuclein
    Zhang, Shujing
    Zhu, Ruowei
    Pan, Buyan
    Xu, Hong
    Olufemi, Modupe F.
    Gathagan, Ronald J.
    Li, Yuanxi
    Zhang, Luyan
    Zhang, Jasmine
    Xiang, Wenxuan
    Kagan, Eliot Masahiro
    Cao, Xingjun
    Yuan, Chaoxing
    Kim, Soo-Jung
    Williams, Christopher K.
    Magaki, Shino
    Vinters, Harry V.
    Lashuel, Hilal A.
    Garcia, Benjamin A.
    Petersson, E. James
    Trojanowski, John Q.
    Lee, Virginia M. -Y.
    Peng, Chao
    NATURE NEUROSCIENCE, 2023, 26 (02) : 213 - +
  • [25] PPARG Post-translational Modifications Regulate Bone Formation and Bone Resorption
    Stechschulte, L. A.
    Czernik, P. J.
    Rotter, Z. C.
    Tausif, F. N.
    Corzo, C. A.
    Marciano, D. P.
    Asteian, A.
    Zheng, J.
    Bruning, J. B.
    Kamenecka, T. M.
    Rosen, C. J.
    Griffin, P. R.
    Lecka-Czernik, B.
    EBIOMEDICINE, 2016, 10 : 174 - 184
  • [26] To (TGF)β or not to (TGF)β:: Fine-tuning of Smad signaling via post-translational modifications
    Wtighton, Katharine H.
    Feng, Xin-Hua
    CELLULAR SIGNALLING, 2008, 20 (09) : 1579 - 1591
  • [27] Functionalizing De Novo Proteins through Post-Translational Modifications
    Buckley, Stephen
    Miao, Yangyang
    Scheller, Leo
    Correia, Bruno E.
    PROTEIN SCIENCE, 2023, 32 (12)
  • [28] Functional regulation of Wnt protein through post-translational modifications
    Yu, Jia
    Virshup, David M.
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2022, : 1797 - 1808
  • [29] Histone post-translational modifications regulate transcription and silent chromatin in Saccharomyces cerevisiae
    Emre, N. C. Tolga
    Berger, S. L.
    HISTONE CODE AND BEYOND: NEW APPROACHES TO CANCER THERAPY, 2006, 57 : 127 - +
  • [30] Cysteine post-translational modifications regulate protein interactions of caveolin-3
    Ashford, Fiona
    Kuo, Chien-Wen
    Dunning, Emma
    Brown, Elaine
    Calagan, Sarah
    Jayasinghe, Izzy
    Henderson, Colin
    Fuller, William
    Wypijewski, Krzysztof
    FASEB JOURNAL, 2024, 38 (05):