END-TO-END LEARNING OF POLYGONS FOR REMOTE SENSING IMAGE CLASSIFICATION

被引:0
|
作者
Girard, Nicolas [1 ]
Tarabalka, Yuliya [1 ]
机构
[1] Univ Cote Azur, Inria, TITANE Team, Nice, France
关键词
High-resolution aerial images; polygon; vectorial; regression; deep learning; convolutional neural networks;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While geographic information systems typically use polygonal representations to map Earth's objects, most state-of-the-art methods produce maps by performing pixelwise classification of remote sensing images, then vectorizing the outputs. This paper studies if one can learn to directly output a vectorial semantic labeling of the image. We here cast a mapping problem as a polygon prediction task, and propose a deep learning approach which predicts vertices of the polygons outlining objects of interest. Experimental results on the Solar photovoltaic array location dataset show that the proposed network succeeds in learning to regress polygon coordinates, yielding directly vectorial map outputs.
引用
下载
收藏
页码:2083 / 2086
页数:4
相关论文
共 50 条
  • [12] End-to-End Learning for Integrated Sensing and Communication
    Mateos-Ramos, Jose Miguel
    Song, Jinxiang
    Wu, Yibo
    Hager, Christian
    Keskin, Musa Furkan
    Yajnanarayana, Vijaya
    Wymeersch, Henk
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 1942 - 1947
  • [13] End-to-End Learning for Image Burst Deblurring
    Wieschollek, Patrick
    Schoelkopf, Bernhard
    Lensch, Hendrik P. A.
    Hirsch, Michael
    COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 35 - 51
  • [14] End-to-end Learning for Encrypted Image Retrieval
    Feng, Qihua
    Li, Peiya
    Lu, ZhiXun
    Liu, Guan
    Huang, Feiran
    2021 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2021, : 1839 - 1845
  • [15] End-to-End Image Classification and Compression With Variational Autoencoders
    Chamain, Lahiru D.
    Qi, Siyu
    Ding, Zhi
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21): : 21916 - 21931
  • [16] End-to-end simulation for support of remote sensing systems design
    Miller, SW
    Bergen, WR
    ATMOSPHERIC AND ENVIRONMENTAL REMOTE SENSING DATA PROCESSING AND UTILIZATION: AN END TO END SYSTEM PERSPECTIVE, 2004, 5548 : 380 - 390
  • [17] AN END-TO-END GENERATIVE CLASSIFICATION MODEL FOR HYPERSPECTRAL IMAGE
    Li, Yaling
    Luo, Xiaoyan
    Sen Li
    Shi, Xiaofeng
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7621 - 7624
  • [18] An End-to-end Efficient Framework for Remote Physiological Signal Sensing
    Hu, Chengyang
    Zhang, Ke-Yue
    Yao, Taiping
    Ding, Shouhong
    Li, Jilin
    Huang, Feiyue
    Ma, Lizhuang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2378 - 2384
  • [19] End-to-end performance modeling of passive remote sensing systems
    Smith, BW
    Borel, CC
    Clodius, WB
    Theiler, J
    Laubscher, B
    Weber, PG
    INFRARED IMAGING SYSTEMS: DESIGN, ANALYSIS, MODELING, AND TESTING VII, 1996, 2743 : 285 - 289
  • [20] End-to-End Attention Pooling for Histopathology Image Classification
    Liu, Juan
    Zuo, Zhiqun
    Chen, Yuqi
    Xiao, Di
    Pang, Baochuan
    Cao, Dehua
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (07): : 1070 - 1078