AN OUTLIER-ROBUST NEURO-FUZZY SYSTEM FOR CLASSIFICATION AND REGRESSION

被引:9
|
作者
Siminski, Krzysztof [1 ]
机构
[1] Silesian Tech Univ, Dept Algorithm & Software, Ul Akad 16, PL-44100 Gliwice, Poland
关键词
outliers; neuro-fuzzy systems; clustering; classification; regression; IDENTIFICATION; KERNEL; NETWORK; MODELS;
D O I
10.34768/amcs-2021-0021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Real life data often suffer from non-informative objects-outliers. These are objects that are not typical in a dataset and can significantly decline the efficacy of fuzzy models. In the paper we analyse neuro-fuzzy systems robust to outliers in classification and regression tasks. We use the fuzzy c-ordered means (FCOM) clustering algorithm for scatter domain partition to identify premises of fuzzy rules. The clustering algorithm elaborates typicality of each object. Data items with low typicalities are removed from further analysis. The paper is accompanied by experiments that show the efficacy of our modified neuro-fuzzy system to identify fuzzy models robust to high ratios of outliers.
引用
下载
收藏
页码:303 / 319
页数:17
相关论文
共 50 条
  • [41] GRNFS: A GRANULAR NEURO-FUZZY SYSTEM FOR REGRESSION IN LARGE VOLUME DATA
    Siminski, Krzysztof
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2021, 31 (03) : 445 - 459
  • [42] A neuro-fuzzy system for inferencing
    Pal, K
    Pal, NR
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 1999, 14 (11) : 1155 - 1182
  • [43] Learning an outlier-robust Kalman filter
    Ting, Jo-Anne
    Theodorou, Evangelos
    Schaal, Stefan
    MACHINE LEARNING: ECML 2007, PROCEEDINGS, 2007, 4701 : 748 - +
  • [44] Memristive Neuro-Fuzzy System
    Merrikh-Bayat, Farnood
    Shouraki, Saeed Bagheri
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (01) : 269 - 285
  • [45] An outlier-robust kernel RLS algorithm for nonlinear system identification
    Santos, Jose Daniel A.
    Barreto, Guilherme A.
    NONLINEAR DYNAMICS, 2017, 90 (03) : 1707 - 1726
  • [46] An outlier-robust kernel RLS algorithm for nonlinear system identification
    José Daniel A. Santos
    Guilherme A. Barreto
    Nonlinear Dynamics, 2017, 90 : 1707 - 1726
  • [47] Recursive System Identification Using Outlier-Robust Local Models
    Bessa, Jessyca A.
    Barreto, Guilherme A.
    IFAC PAPERSONLINE, 2019, 52 (01): : 436 - 441
  • [48] Deep recurrent Gaussian processes for outlier-robust system identification
    Mattos, Cesar Lincoln C.
    Dai, Zhenwen
    Damianou, Andreas
    Barreto, Guilherme A.
    Lawrence, Neil D.
    JOURNAL OF PROCESS CONTROL, 2017, 60 : 82 - 94
  • [49] QSRR study of psychiatric drugs using Classification and Regression Trees combined with adaptive Neuro-Fuzzy Inference System
    Jalali-Heravi, Mehdi
    Shahbazikhah, Parvis
    Ghadiri-Bidhendi, Atieh
    QSAR & COMBINATORIAL SCIENCE, 2008, 27 (06): : 729 - 739
  • [50] Optimization of Neuro-Fuzzy System Using Genetic Algorithm for Chromosome Classification
    Sarosa, M.
    Ahmad, A. S.
    Riyanto, B.
    Noer, A. S.
    JOURNAL OF ICT RESEARCH AND APPLICATIONS, 2007, 1 (01) : 56 - 69