Natural higher-derivatives generalization for the Klein-Gordon equation

被引:3
|
作者
Thibes, Ronaldo [1 ]
机构
[1] Univ Estadual Sudoeste Bahia, Dept Ciencias Exatas & Nat, Rodovia BR 415,Km 03 S-N, BR-45700000 Itapetinga, BA, Brazil
关键词
Higher-derivatives models; generalized Klein-Gordon equation; Klein-Gordon equation; ORDER; ELECTRODYNAMICS; QUANTIZATION; FORMALISM;
D O I
10.1142/S0217732321502059
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose a natural family of higher-order partial differential equations generalizing the second-order Klein-Gordon equation. We characterize the associated model by means of a generalized action for a scalar field, containing higher-derivative terms. The limit obtained by considering arbitrarily higher-order powers of the d'Alembertian operator leading to a formal infinite-order partial differential equation is discussed. The general model is constructed using the exponential of the d'Alembertian differential operator. The canonical energy-momentum tensor densities and field propagators are explicitly computed. We consider both homogeneous and non-homogeneous situations. The classical solutions are obtained for all cases.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [41] INVERSE SCATTERING FOR KLEIN-GORDON EQUATION
    MENZALA, GP
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 83 (04) : 735 - 736
  • [42] Solitons for the Nonlinear Klein-Gordon Equation
    Bellazzini, J.
    Benci, V.
    Bonanno, C.
    Micheletti, A. M.
    ADVANCED NONLINEAR STUDIES, 2010, 10 (02) : 481 - 499
  • [43] NONDISPERSIVE SOLUTIONS OF THE KLEIN-GORDON EQUATION
    HILLION, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (05) : 1817 - 1821
  • [44] CONTINUUM SOLUTIONS OF THE KLEIN-GORDON EQUATION
    JANSEN, G
    PUSCH, M
    SOFF, G
    ZEITSCHRIFT FUR PHYSIK D-ATOMS MOLECULES AND CLUSTERS, 1988, 8 (04): : 315 - 327
  • [45] The Klein-Gordon Equation in Machian Model
    Bin Liu
    Yun-Chuan Dai
    Xian-Ru Hu
    Jian-Bo Deng
    International Journal of Theoretical Physics, 2011, 50 : 3544 - 3551
  • [46] SOLVABLE POTENTIALS FOR THE KLEIN-GORDON EQUATION
    KULKARNI, SV
    SHARMA, LK
    INDIAN JOURNAL OF PHYSICS AND PROCEEDINGS OF THE INDIAN ASSOCIATION FOR THE CULTIVATION OF SCIENCE-PART A, 1980, 54 (1-2): : 21 - 28
  • [47] Difference equation for the Klein-Gordon field
    不详
    ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 129, 2003, 129 : 180 - 216
  • [48] IMPACT PROBLEM FOR KLEIN-GORDON EQUATION
    REISS, EL
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1969, 17 (03) : 526 - &
  • [49] ANALYTICAL INSTABILITY OF THE KLEIN-GORDON EQUATION
    CLOOT, AHJ
    HERBST, BM
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1988, 21 (01) : 17 - 26
  • [50] METHOD OF REFLECTIONS FOR THE KLEIN-GORDON EQUATION
    Korzyuk, Academician Viktor I.
    V. Rudzko, Jan
    DOKLADY NATSIONALNOI AKADEMII NAUK BELARUSI, 2022, 66 (03): : 263 - 268