The partial captivity condition for U(1) extensions of expanding maps on the circle

被引:8
|
作者
Nakano, Yushi [1 ]
Tsujii, Masato [2 ]
Wittsten, Jens [3 ]
机构
[1] Osaka City Univ, Adv Math Inst, Osaka 5588585, Japan
[2] Kyushu Univ, Dept Math, Fukuoka 8128581, Japan
[3] Ritsumeikan Univ, Dept Math Sci, Kusatsu 5258577, Japan
关键词
dynamical system; partially expanding map; partial captivity; transversality;
D O I
10.1088/0951-7715/29/7/1917
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the compact group extension f: T-2 -> T-2, f(x, s)=(E(x), s + tau(x) mod 1) of an expanding map E : S-1 -> S-1. The dynamics of f and its stochastic perturbations have previously been studied under the so-called partial captivity condition. Here we prove a supplementary result that shows that partial captivity is a C-r generic condition on tau, once we fix E.
引用
收藏
页码:1917 / 1925
页数:9
相关论文
共 50 条
  • [21] EDMD for expanding circle maps and their complex perturbations
    Bandtlow, Oscar F.
    Just, Wolfram
    Slipantschuk, Julia
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 73
  • [22] Analytic expanding circle maps with explicit spectra
    Slipantschuk, Julia
    Bandtlow, Oscar F.
    Just, Wolfram
    NONLINEARITY, 2013, 26 (12) : 3231 - 3245
  • [23] HIGHER DIMENSIONAL EXPANDING MAPS AND TORAL EXTENSIONS
    Mihailescu, Eugen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (10) : 3467 - 3475
  • [24] Lyapunov minimizing measures for expanding maps of the circle
    Contreras, G
    Lopes, AO
    Thieullen, P
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 : 1379 - 1409
  • [25] Computing invariant measures for expanding circle maps
    Keane, M
    Murray, R
    Young, LS
    NONLINEARITY, 1998, 11 (01) : 27 - 46
  • [26] Entropy estimates for a family of expanding maps of the circle
    de la Llave, Rafael
    Shub, Michael
    Simo, Carles
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 10 (2-3): : 597 - 608
  • [27] Optimal linear response for expanding circle maps
    Froyland, Gary
    Galatolo, Stefano
    NONLINEARITY, 2025, 38 (03)
  • [28] Historic Behaviour for Random Expanding Maps on the Circle
    Nakano, Yushi
    TOKYO JOURNAL OF MATHEMATICS, 2017, 40 (01) : 165 - 184
  • [29] Horseshoes for a Class of Nonuniformly Expanding Random Circle Maps
    Lamb, Jeroen S. W.
    Tenaglia, Giuseppe
    Turaev, Dmitry
    ANNALES HENRI POINCARE, 2025,
  • [30] Fractal Weyl law for skew extensions of expanding maps
    Jean-Francois, Arnoldi
    NONLINEARITY, 2012, 25 (06) : 1671 - 1693