Testing moderation in network meta-analysis with individual participant data

被引:22
|
作者
Dagne, Getachew A. [1 ]
Brown, C. Hendricks [2 ,3 ,4 ]
Howe, George [5 ,6 ]
Kellam, Sheppard G. [7 ]
Liu, Lei [8 ]
机构
[1] Univ S Florida, Coll Publ Hlth, Dept Epidemiol & Biostat, MDC 56, Tampa, FL USA
[2] Northwestern Univ, Dept Psychiat & Behav Sci, Feinberg Sch Med, Chicago, IL 60611 USA
[3] Northwestern Univ, Dept Prevent Med, Feinberg Sch Med, Chicago, IL 60611 USA
[4] Northwestern Univ, Dept Med Social Sci, Feinberg Sch Med, Chicago, IL 60611 USA
[5] George Washington Univ, Dept Psychol, Washington, DC 20052 USA
[6] George Washington Univ, Dept Psychiat & Behav Sci, Washington, DC USA
[7] Johns Hopkins Univ, Bloomberg Sch Publ Hlth, Dept Mental Hlth, Baltimore, MD USA
[8] Northwestern Univ, Dept Prevent Med, Dept Psychiat & Behav Sci, Feinberg Sch Med, Chicago, IL USA
关键词
integrative data analysis; meta-analysis; moderation; network meta-analysis; participant level data; statistical power; INTEGRATIVE DATA-ANALYSIS; PATIENT-LEVEL; RANDOMIZED-TRIALS; META-REGRESSION; TASK-FORCE; AGGREGATE; IMPACT; BEHAVIOR; BENEFITS; MODEL;
D O I
10.1002/sim.6883
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Meta-analytic methods for combining data from multiple intervention trials are commonly used to estimate the effectiveness of an intervention. They can also be extended to study comparative effectiveness, testing which of several alternative interventions is expected to have the strongest effect. This often requires network meta-analysis (NMA), which combines trials involving direct comparison of two interventions within the same trial and indirect comparisons across trials. In this paper, we extend existing network methods for main effects to examining moderator effects, allowing for tests of whether intervention effects vary for different populations or when employed in different contexts. In addition, we study how the use of individual participant data may increase the sensitivity of NMA for detecting moderator effects, as compared with aggregate data NMA that employs study-level effect sizes in a meta-regression framework. A new NMA diagram is proposed. We also develop a generalized multilevel model for NMA that takes into account within-trial and between-trial heterogeneity and can include participant-level covariates. Within this framework, we present definitions of homogeneity and consistency across trials. A simulation study based on this model is used to assess effects on power to detect both main and moderator effects. Results show that power to detect moderation is substantially greater when applied to individual participant data as compared with study-level effects. We illustrate the use of this method by applying it to data from a classroom-based randomized study that involved two sub-trials, each comparing interventions that were contrasted with separate control groups. Copyright (c) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:2485 / 2502
页数:18
相关论文
共 50 条
  • [31] Combining individual participant and aggregated data in a meta-analysis with correlational studies
    Pigott, Terri
    Williams, Ryan
    Polanin, Joshua
    RESEARCH SYNTHESIS METHODS, 2012, 3 (04) : 257 - 268
  • [32] Meta-analysis of prognostic and predictive factors: Towards individual participant data?
    Faron, Matthieu
    Pignon, Jean-Pierre
    Paoletti, Xavier
    EUROPEAN JOURNAL OF CANCER, 2018, 104 : 224 - 226
  • [33] Callosotomy affects performance IQ: A meta-analysis of individual participant data
    Westerhausen, Rene
    Karud, Celine M. R.
    NEUROSCIENCE LETTERS, 2018, 665 : 43 - 47
  • [34] Depression, anxiety, and the risk of cancer: An individual participant data meta-analysis
    van Tuijl, Lonneke A.
    Basten, Maartje
    Pan, Kuan-Yu
    Vermeulen, Roel
    Portengen, Luetzen
    de Graeff, Alexander
    Dekker, Joost
    Geerlings, Mirjam I.
    Hoogendoorn, Adriaan
    Lamers, Femke
    Voogd, Adri C.
    Abell, Jessica
    Awadalla, Philip
    Beekman, Aartjan T. F.
    Bjerkeset, Ottar
    Boyd, Andy
    Cui, Yunsong
    Frank, Philipp
    Galenkamp, Henrike
    Garssen, Bert
    Hellingman, Sean
    Huisman, Martijn
    Huss, Anke
    de Jong, Trynke R.
    Keats, Melanie R.
    Kok, Almar A. L.
    Krokstad, Steinar
    van Leeuwen, Flora E.
    Luik, Annemarie I.
    Noisel, Nolwenn
    Onland-Moret, N. Charlotte
    Payette, Yves
    Penninx, Brenda W. J. H.
    Rissanen, Ina
    Roest, Annelieke M.
    Ruiter, Rikje
    Schoevers, Robert A.
    Soave, David
    Spaan, Mandy
    Steptoe, Andrew
    Stronks, Karien
    Sund, Erik R.
    Sweeney, Ellen
    Twait, Emma L.
    Teyhan, Alison
    Verschuren, W. M. Monique
    van der Willik, Kimberly D.
    Rosmalen, Judith G. M.
    Ranchor, Adelita V.
    CANCER, 2023, 129 (20) : 3287 - 3299
  • [35] Job insecurity and risk of diabetes: a meta-analysis of individual participant data
    Ferrie, Jane E.
    Virtanen, Marianna
    Jokela, Markus
    Madsen, Ida E. H.
    Heikkila, Katriina
    Alfredsson, Lars
    Batty, G. David
    Bjorner, Jakob B.
    Borritz, Marianne
    Burr, Hermann
    Dragano, Nico
    Elovainio, Marko
    Fransson, Eleonor I.
    Knutsson, Anders
    Koskenvuo, Markku
    Koskinen, Aki
    Kouvonen, Anne
    Kumari, Meena
    Nielsen, Martin L.
    Nordin, Maria
    Oksanen, Tuula
    Pahkin, Krista
    Pejtersen, Jan H.
    Pentti, Jaana
    Salo, Paula
    Shipley, Martin J.
    Suominen, Sakari B.
    Tabak, Adam
    Theorell, Toeres
    Vaananen, Ari
    Vahtera, Jussi
    Westerholm, Peter J. M.
    Westerlund, Hugo
    Rugulies, Reiner
    Nyberg, Solja T.
    Kivimaki, Mika
    CANADIAN MEDICAL ASSOCIATION JOURNAL, 2016, 188 (17-18) : E447 - E455
  • [36] Individual participant data (IPD) meta-analysis: An introduction - Narrative review
    Rai, Ekta
    Naik, Vibhavari
    Williams, Aparna
    Kamath, Mohan S.
    INDIAN JOURNAL OF ANAESTHESIA, 2025, 69 (01) : 153 - 160
  • [37] Testosterone, SHBG and the metabolic syndrome: an individual participant data meta-analysis
    Brand, J. S.
    Rovers, M. M.
    van der Schouw, Y. T.
    DIABETOLOGIA, 2011, 54 : S219 - S219
  • [38] Breastfeeding and handedness: a systematic review and meta-analysis of individual participant data
    Hujoel, Philippe P.
    LATERALITY, 2019, 24 (05): : 582 - 599
  • [39] Malaria, malnutrition, and birthweight: A meta-analysis using individual participant data
    Cates, Jordan E.
    Unger, Holger W.
    Briand, Valerie
    Fievet, Nadine
    Valea, Innocent
    Tinto, Halidou
    D'Alessandro, Umberto
    Landis, Sarah H.
    Adu-Afarwuah, Seth
    Dewey, Kathryn G.
    Ter Kuile, Feiko O.
    Desai, Meghna
    Dellicour, Stephanie
    Ouma, Peter
    Gutman, Julie
    Oneko, Martina
    Slutsker, Laurence
    Terlouw, Dianne J.
    Kariuki, Simon
    Ayisi, John
    Madanitsa, Mwayiwawo
    Mwapasa, Victor
    Ashorn, Per
    Maleta, Kenneth
    Mueller, Ivo
    Stanisic, Danielle
    Schmiegelow, Christentze
    Lusingu, John P. A.
    van Eijk, Anna Maria
    Bauserman, Melissa
    Adair, Linda
    Cole, Stephen R.
    Westreich, Daniel
    Meshnick, Steven
    Rogerson, Stephen
    PLOS MEDICINE, 2017, 14 (08)
  • [40] Duration of Breastfeeding and Risk of SIDS: An Individual Participant Data Meta-analysis
    Thompson, John M. D.
    Tanabe, Kawai
    Moon, Rachel Y.
    Mitchell, Edwin A.
    McGarvey, Cliona
    Tappin, David
    Blair, Peter S.
    Hauck, Fern R.
    PEDIATRICS, 2017, 140 (05)