On the Lossy Kernelization for Connected Treedepth Deletion Set

被引:0
|
作者
Eiben, Eduard [1 ]
Majumdar, Diptapriyo [2 ]
Ramanujan, M. S. [3 ]
机构
[1] Royal Holloway Univ London, Egham, England
[2] Indraprastha Inst Informat Technol Delhi, New Delhi, India
[3] Univ Warwick, Coventry, England
基金
英国工程与自然科学研究理事会;
关键词
Treedepth; Kernelization; Connected Treedepth Deletion Set; Lossy Kernelization; DOMINATION; KERNELS; GRAPHS;
D O I
10.1007/978-3-031-15914-5_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the CONNECTED eta-TREEDEPTH DELETION problem, where the input instance is an undirected graph G, and an integer k and the objective is to decide whether there is a vertex set S subset of V(G) such that vertical bar S vertical bar <= k, every connected component of G - S has treedepth at most eta and G[S] is a connected graph. As this problem naturally generalizes the well-studied CONNECTED VERTEX COVER problem, when parameterized by the solution size k, CONNECTED eta-TREEDEPTH DELETION is known to not admit a polynomial kernel unless NP subset of coNP/poly. This motivates the question of designing approximate polynomial kernels for this problem. In this paper, we show that for every fixed 0 < epsilon <= 1, CONNECTED eta-TREEDEPTH DELETION admits a time-efficient (1+epsilon) -approximate kernel of size k(2O(eta+1/epsilon)) (i.e., a Polynomial-size Approximate Kernelization Scheme).
引用
收藏
页码:201 / 214
页数:14
相关论文
共 50 条
  • [21] On Kernelization for Edge Dominating Set under Structural Parameters
    Hols, Eva-Maria C.
    Kratsch, Stefan
    36TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2019), 2019,
  • [22] Kernelization algorithms for d-hitting set problems
    Abu-Khzam, Faisal N.
    Algorithms and Data Structures, Proceedings, 2007, 4619 : 434 - 445
  • [23] An improved kernelization algorithm for r-Set Packing
    Abu-Khzam, Faisal N.
    INFORMATION PROCESSING LETTERS, 2010, 110 (16) : 621 - 624
  • [24] Towards Optimal and Expressive Kernelization for d-Hitting Set
    van Bevern, Rene
    ALGORITHMICA, 2014, 70 (01) : 129 - 147
  • [25] Kernelization for feedback vertex set via elimination distance to a forest☆
    Dekker, David J. C.
    Jansen, Bart M. P.
    DISCRETE APPLIED MATHEMATICS, 2024, 346 : 192 - 214
  • [26] Kernelization and parameterized algorithms for covering a tree by a set of stars or paths
    You, Jie
    Wang, Jianxin
    Feng, Qilong
    Shi, Feng
    THEORETICAL COMPUTER SCIENCE, 2015, 607 : 257 - 270
  • [27] Kernelization for Feedback Vertex Set via Elimination Distance to a Forest
    Dekker, David
    Jansen, Bart M. P.
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2022), 2022, 13453 : 158 - 172
  • [28] Towards Optimal and Expressive Kernelization for d-Hitting Set
    René van Bevern
    Algorithmica, 2014, 70 : 129 - 147
  • [29] A Turing Kernelization Dichotomy for Structural Parameterizations of F-Minor-Free Deletion
    Donkers, Huib
    Jansen, Bart M. P.
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2019), 2019, 11789 : 106 - 119
  • [30] Kernelization and randomized Parameterized algorithms for Co-path Set problem
    Feng, Qilong
    Zhou, Qian
    Wang, Jianxin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 32 (01) : 67 - 78