On the Lossy Kernelization for Connected Treedepth Deletion Set

被引:0
|
作者
Eiben, Eduard [1 ]
Majumdar, Diptapriyo [2 ]
Ramanujan, M. S. [3 ]
机构
[1] Royal Holloway Univ London, Egham, England
[2] Indraprastha Inst Informat Technol Delhi, New Delhi, India
[3] Univ Warwick, Coventry, England
基金
英国工程与自然科学研究理事会;
关键词
Treedepth; Kernelization; Connected Treedepth Deletion Set; Lossy Kernelization; DOMINATION; KERNELS; GRAPHS;
D O I
10.1007/978-3-031-15914-5_15
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the CONNECTED eta-TREEDEPTH DELETION problem, where the input instance is an undirected graph G, and an integer k and the objective is to decide whether there is a vertex set S subset of V(G) such that vertical bar S vertical bar <= k, every connected component of G - S has treedepth at most eta and G[S] is a connected graph. As this problem naturally generalizes the well-studied CONNECTED VERTEX COVER problem, when parameterized by the solution size k, CONNECTED eta-TREEDEPTH DELETION is known to not admit a polynomial kernel unless NP subset of coNP/poly. This motivates the question of designing approximate polynomial kernels for this problem. In this paper, we show that for every fixed 0 < epsilon <= 1, CONNECTED eta-TREEDEPTH DELETION admits a time-efficient (1+epsilon) -approximate kernel of size k(2O(eta+1/epsilon)) (i.e., a Polynomial-size Approximate Kernelization Scheme).
引用
收藏
页码:201 / 214
页数:14
相关论文
共 50 条
  • [1] Lossy Kernelization for (Implicit) Hitting Set Problems
    Fomin, Fedor V.
    Le, Tien-Nam
    Lokshtanov, Daniel
    Saurabh, Saket
    Thomassé, Stéphan
    Zehavi, Meirav
    arXiv, 2023,
  • [2] Lossy Kernelization for (Implicit) Hitting Set Problems
    Fomin, Fedor V.
    Le, Tien-Nam
    Lokshtanov, Daniel
    Saurabh, Saket
    Thomassé, Stéphan
    Zehavi, Meirav
    Leibniz International Proceedings in Informatics, LIPIcs, 2023, 274
  • [3] Lossy Kernelization
    Lokshtanov, Daniel
    Panolan, Fahad
    Ramanujan, M. S.
    Saurabh, Saket
    STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, : 224 - 237
  • [4] The effect of girth on the kernelization complexity of Connected Dominating Set
    Misra, Neeldhara
    Philip, Geevarghese
    Raman, Venkatesh
    Saurabh, Saket
    IARCS ANNUAL CONFERENCE ON FOUNDATIONS OF SOFTWARE TECHNOLOGY AND THEORETICAL COMPUTER SCIENCE (FSTTCS 2010), 2010, 8 : 96 - 107
  • [5] Connectivity Is Not a Limit for Kernelization: Planar Connected Dominating Set
    Gu, Qianping
    Imani, Navid
    LATIN 2010: THEORETICAL INFORMATICS, 2010, 6034 : 26 - 37
  • [6] Lossy Planarization: A Constant-Factor Approximate Kernelization for Planar Vertex Deletion
    Jansen, Bart M. P.
    Wlodarczyk, Michal
    PROCEEDINGS OF THE 54TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '22), 2022, : 900 - 913
  • [7] Lossy Kernels for Connected Dominating Set on Sparse Graphs
    Eiben, Eduard
    Kumar, Mithilesh
    Mouawad, Amer E.
    Panolan, Fahad
    Siebertz, Sebastian
    35TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2018), 2018, 96
  • [8] LOSSY KERNELS FOR CONNECTED DOMINATING SET ON SPARSE GRAPHS
    Eiben, Eduard
    Kumar, Mithilesh
    Mouawad, Amer E.
    Panolan, Fahad
    Siebertz, Sebastian
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1743 - 1771
  • [9] Lossy Kernelization of Same-Size Clustering
    Bandyapadhyay, Sayan
    Fomin, Fedor V.
    Golovach, Petr A.
    Purohit, Nidhi
    Simonov, Kirill
    THEORY OF COMPUTING SYSTEMS, 2023, 67 (04) : 785 - 824
  • [10] Lossy Kernelization of Same-Size Clustering
    Sayan Bandyapadhyay
    Fedor V. Fomin
    Petr A. Golovach
    Nidhi Purohit
    Kirill Simonov
    Theory of Computing Systems, 2023, 67 : 785 - 824