Joint Task Offloading and Service Caching for Multi-Access Edge Computing in WiFi-Cellular Heterogeneous Networks

被引:19
|
作者
Fan, Wenhao [1 ,2 ]
Han, Junting [1 ,2 ]
Su, Yi [1 ,2 ]
Liu, Xun [1 ,2 ]
Wu, Fan [1 ,2 ]
Tang, Bihua [1 ,2 ]
Liu, Yuan'an [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Elect Engn, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Beijing Key Lab Work Safety Intelligent Monitorin, Beijing 100876, Peoples R China
基金
北京市自然科学基金;
关键词
Task analysis; Wireless fidelity; Servers; Cellular networks; Heterogeneous networks; Energy consumption; Delays; Edge computing; task offloading; service caching; channel allocation; resource management; RESOURCE-ALLOCATION; COMPUTATION;
D O I
10.1109/TWC.2022.3178541
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Enabled by Multi-access Edge Computing (MEC) in a WiFi-cellular heterogeneous network, the tasks of mobile terminals (MTs) can be offloaded via the cellular network to the MEC servers or cloud server, or via the WiFi network to alleviate transmission congestion of the cellular network. The MEC also enables service caching to cache the programs/libraries/databases of the tasks to avoid repeated input data uploading. Existing research works lack joint optimization on the task offloading and service caching for MEC in the WiFi-cellular heterogeneous network. In this paper, a novel resource management scheme for joint task offloading and service caching is proposed to maximize the energy consumption benefits of all the MTs covered by a WiFi-cellular heterogeneous network while guaranteeing the task processing delay tolerance of each MT. We consider the constraints on limited computing and storage resources of the MEC servers equipped on the cellular base station and the WiFi access point, and we also consider cellular channel allocation for the task offloading. We design an iterative algorithm based on the alternating optimization technique to solve the proposed mixed integer nonlinear programming problem efficiently. Extensive simulations are conducted in multiple scenarios by varying different crucial parameters. The numerical results demonstrate that our scheme can largely improve the system performance in all the scenarios, and energy consumption reduction optimized by our scheme is 16.24%-43.09% higher than those by the comparative works.
引用
下载
收藏
页码:9653 / 9667
页数:15
相关论文
共 50 条
  • [21] Task offloading and parameters optimization of MAR in multi-access edge computing
    Li, Yumei
    Zhu, Xiumin
    Song, Shudian
    Ma, Shuyue
    Yang, Feng
    Zhai, Linbo
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 215
  • [22] Congestion-aware adaptive decentralised computation offloading and caching for multi-access edge computing networks
    Tefera, Getenet
    She, Kun
    Chen, Min
    Ahmed, Awais
    IET COMMUNICATIONS, 2020, 14 (19) : 3410 - 3419
  • [23] Decentralized adaptive resource-aware computation offloading & caching for multi-access edge computing networks
    Tefera, Getenet
    She, Kun
    Shelke, Maya
    Ahmed, Awais
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2021, 30
  • [24] Joint Service Caching and Trajectory Optimization for Multi-UAV Assisted Multi-access Edge Computing
    Zhang, Xin
    Deng, Yiqin
    Zhang, Haixia
    Fang, Yuguang
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 6886 - 6891
  • [25] Joint intelligent optimization of task offloading and service caching for vehicular edge computing
    Liu L.
    Chen C.
    Feng J.
    Pei Q.
    He C.
    Dou Z.
    Tongxin Xuebao/Journal on Communications, 2021, 42 (01): : 18 - 26
  • [26] Joint optimization of service chain caching and task offloading in mobile edge computing
    Peng, Kai
    Nie, Jiangtian
    Kumar, Neeraj
    Cai, Chao
    Kang, Jiawen
    Xiong, Zehui
    Zhang, Yang
    APPLIED SOFT COMPUTING, 2021, 103
  • [27] Joint Task Offloading and Resource Allocation for NOMA-Enabled Multi-Access Mobile Edge Computing
    Song, Zhengyu
    Liu, Yuanwei
    Sun, Xin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (03) : 1548 - 1564
  • [28] Heuristic Approaches for Computational Offloading in Multi-Access Edge Computing Networks
    Singh, Raghubir
    Armour, Simon
    Khan, Aftab
    Sooriyabandara, Mahesh
    Oikonomou, George
    2020 IEEE 31ST ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2020,
  • [29] Joint Task Offloading and Resource Allocation for Multi-Access Edge Computing Assisted by Parked and Moving Vehicles
    Fan, Wenhao
    Liu, Jie
    Hua, Mingyu
    Wu, Fan
    Liu, Yuan'an
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (05) : 5314 - 5330
  • [30] Service-Aware Cooperative Task Offloading and Scheduling in Multi-access Edge Computing Empowered IoT
    Chen, Zhiyan
    Tao, Ming
    Li, Xueqiang
    He, Ligang
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT II, 2024, 14488 : 327 - 346