The shifted Rayleigh filter for bearings only tracking

被引:0
|
作者
Clark, JMC [1 ]
Vinter, RB [1 ]
Yaqoob, MM [1 ]
机构
[1] Univ London Imperial Coll Sci & Technol, EEE Dept, London SW7 2BT, England
关键词
bearings only tracking; moment matching filters; multiple sensors; clutter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The recently introduced shifted Rayleigh filter is a moment matching algorithm that exploits the essential structure of the nonlinearities present in bearings-only tracking. The algorithm can befitted to a wide range of scenarios and places no restrictions on model dimensionality. The key feature is that it generates the exact updated conditional distribution of target motion, given a normal approximation to the prior In this paper two versions of the algorithm are applied to the problem of tracking a moving object from multiple, independently drifting sonobuoys that supply noisy bearings only measurements, corrupted by clutter A separate moving sensor provides noisy bearings only measurements of sonobuoy motion. The shifted Rayleigh filter adapts well to this scenario. Simulations indicate that it give good estimates, even in adverse circumstances when the clutter probability is 67% and the standard deviation of sensor noise is 16 degrees.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [31] An Efficient Particle Filter with Variable Number of Particles for Bearings-Only Tracking
    Xu Linzhou
    Zhang Xin-hua
    Yang Shao-qing
    Fan Wen-tao
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 2395 - +
  • [32] Improved Pseudolinear Kalman Filter Algorithms for Bearings-Only Target Tracking
    Ngoc Hung Nguyen
    Dogancay, Kutluyil
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (23) : 6119 - 6134
  • [33] Robust Derivative-Free Cubature Kalman Filter for Bearings-Only Tracking
    Wu, Hao
    Chen, Shuxin
    Yang, Binfeng
    Chen, Kun
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (08) : 1865 - 1870
  • [34] Robust range-parameterized cubature Kalman filter for bearings-only tracking
    Hao Wu
    Shu-xin Chen
    Bin-feng Yang
    Xi Luo
    Journal of Central South University, 2016, 23 : 1399 - 1405
  • [35] A Gaussian-Sum Based Cubature Kalman Filter for Bearings-Only Tracking
    Leong, Pei H.
    Arulampalam, Sanjeev
    Lamahewa, Tharaka A.
    Abhayapala, Thushara D.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2013, 49 (02) : 1161 - 1176
  • [36] Robust range-parameterized cubature Kalman filter for bearings-only tracking
    吴昊
    陈树新
    杨宾峰
    罗玺
    JournalofCentralSouthUniversity, 2016, 23 (06) : 1399 - 1405
  • [37] Bearings-Only Target Tracking with an Unbiased Pseudo-Linear Kalman Filter
    Huang, Zihao
    Chen, Shijin
    Hao, Chengpeng
    Orlando, Danilo
    REMOTE SENSING, 2021, 13 (15)
  • [38] Particle Swarm Optimization Based Tuning of Unscented Kalman Filter for Bearings Only Tracking
    Jatoth, Ravi Kumar
    Kumar, T. Kishore
    2009 INTERNATIONAL CONFERENCE ON ADVANCES IN RECENT TECHNOLOGIES IN COMMUNICATION AND COMPUTING (ARTCOM 2009), 2009, : 444 - 448
  • [39] A Pseudolinear Maximum Correntropy Kalman Filter Framework for Bearings-Only Target Tracking
    Zhong, Shan
    Peng, Bei
    Ouyang, Lingqiang
    Yang, Xinyue
    Zhang, Hongyu
    Wang, Gang
    IEEE SENSORS JOURNAL, 2023, 23 (17) : 19524 - 19538
  • [40] Robust range-parameterized cubature Kalman filter for bearings-only tracking
    Wu Hao
    Chen Shu-xin
    Yang Bin-feng
    Luo Xi
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2016, 23 (06) : 1399 - 1405