Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose

被引:294
|
作者
Motagamwala, Ali Hussain [1 ,2 ]
Won, Wangyun [1 ,2 ,3 ]
Sener, Canan [1 ,2 ]
Alonso, David Martin [1 ]
Maravelias, Christos T. [1 ,2 ]
Dumesic, James A. [1 ,2 ]
机构
[1] Univ Wisconsin Madison, Dept Chem & Biol Engn, Madison, WI 53706 USA
[2] Univ Wisconsin Madison, US Dept Energy, Great Lakes Bioenergy Res Ctr, 1552 Univ Ave, Madison, WI 53726 USA
[3] Changwon Natl Univ, Dept Chem Engn, Changwonsi 51140, Gyeongsangnam D, South Korea
来源
SCIENCE ADVANCES | 2018年 / 4卷 / 01期
关键词
AMORPHOUS POLY(ETHYLENE FURANOATE); CATALYTIC CONVERSION; SELECTIVE OXIDATION; SORPTION; DERIVATIVES; TRANSPORT; SOLVENTS; STRATEGY; FUELS;
D O I
10.1126/sciadv.aap9722
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a process for converting fructose, at a high concentration (15 weight %), to 2,5-furandicarboxylic acid (FDCA), a monomer used in the production of polyethylene furanoate, a renewable plastic. In our process, fructose is dehydrated to hydroxymethylfurfural (HMF) at high yields (70%) using a g-valerolactone (GVL)/H2O solvent system. HMF is subsequently oxidized to FDCA over a Pt/C catalyst with 93% yield. The advantage of our system is the higher solubility of FDCA in GVL/H2O, which allows oxidation at high concentrations using a heterogeneous catalyst that eliminates the need for a homogeneous base. In addition, FDCA can be separated from the GVL/H2O solvent system by crystallization to obtain >99% pure FDCA. Our process eliminates the use of corrosive acids, because FDCA is an effective catalyst for fructose dehydration, leading to improved economic and environmental impact of the process. Our techno-economic model indicates that the overall process is economically competitive with current terephthalic acid processes.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives
    Haibo Yuan
    Hongling Liu
    Jieke Du
    Kaiquan Liu
    Tengfei Wang
    Long Liu
    [J]. Applied Microbiology and Biotechnology, 2020, 104 : 527 - 543
  • [42] Biocatalytic production of 2,5-furandicarboxylic acid: recent advances and future perspectives
    Yuan, Haibo
    Liu, Hongling
    Du, Jieke
    Liu, Kaiquan
    Wang, Tengfei
    Liu, Long
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2020, 104 (02) : 527 - 543
  • [43] Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst
    Zhang, Zehui
    Zhen, Judun
    Liu, Bing
    Lv, Kangle
    Deng, Kejian
    [J]. GREEN CHEMISTRY, 2015, 17 (02) : 1308 - 1317
  • [44] Semi-Biobased Polyamide Membranes Derived from 2,5-Furandicarboxylic Acid for Gas Separation
    Uc-Fernandez, Erik
    Sulub-Sulub, Rita
    Gonzalez-Diaz, Abigail
    Herrera-Kao, Wilberth
    Avila-Ortega, Alejandro
    Cetina-Mancilla, Enoc
    Aguilar-Vega, Manuel J.
    Gonzalez-Diaz, Maria Ortencia
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (27): : 10152 - 10163
  • [45] Production of 2,5-furandicarboxylic acid (FDCA) from starch, glucose, or high-fructose corn syrup: techno-economic analysis
    Dessbesell, Luana
    Souzanchi, Sadra
    Rao, Kasanneni Tirumala Venkateswara
    Carrillo, Alejandro Alarcon
    Bekker, Devon
    Hall, Kristen Amanda
    Lawrence, Katherine Mary
    Tait, Carolyn Lindsay Judge
    Xu, Chunbao
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (05): : 1234 - 1245
  • [46] Semi-bio-based aromatic polyamides from 2,5-furandicarboxylic acid: toward high-performance polymers from renewable resources
    Luo, Kaiju
    Wang, Yan
    Yu, Junrong
    Zhu, Jing
    Hu, Zuming
    [J]. RSC ADVANCES, 2016, 6 (90): : 87013 - 87020
  • [47] Synthesis and characterisation of polyamides based on 2,5-furandicarboxylic acid as a sustainable building block for engineering plastics
    Kamran, Muhammad
    Davidson, Matthew G.
    de Vos, Sicco
    Tsanaktsis, Vasilios
    Yeniad, Bahar
    [J]. POLYMER CHEMISTRY, 2022, 13 (23) : 3433 - 3443
  • [48] From Biomass to Functional Crystalline Diamond Nanothread: Pressure-Induced Polymerization of 2,5-Furandicarboxylic Acid
    Wang, Xuan
    Yang, Xin
    Wang, Yida
    Tang, Xingyu
    Zheng, Haiyan
    Zhang, Peijie
    Gao, Dexiang
    Che, Guangwei
    Wang, Zijia
    Guan, Aijiao
    Xiang, Jun-Feng
    Tang, Mingxue
    Dong, Xiao
    Li, Kuo
    Mao, Ho-kwang
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (48) : 21837 - 21842
  • [49] Conversion of inulin-rich raw plant biomass to 2,5-furandicarboxylic acid (FDCA): Progress and challenge towards biorenewable plastics
    Heo, Jae Bok
    Lee, Yong-Suk
    Chung, Chung-Han
    [J]. BIOTECHNOLOGY ADVANCES, 2021, 53
  • [50] CATALYTIC-OXIDATION OF HMF TO 2,5-FURANDICARBOXYLIC ACID
    VERDEGUER, P
    MERAT, N
    GASET, A
    [J]. JOURNAL OF MOLECULAR CATALYSIS, 1993, 85 (03): : 327 - 344