Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling

被引:9
|
作者
Gehi, Bhuvaneshwari R. [1 ,2 ]
Gadhave, Kundlik [1 ]
Uversky, Vladimir N. [3 ,4 ,5 ]
Giri, Rajanish [1 ]
机构
[1] Indian Inst Technol Mandi, Sch Basic Sci, VPO Kamand, Mandi 175005, Himachal Prades, India
[2] Indian Inst Sci, Mol Biophys Unit MBU, Bengaluru 560012, India
[3] Univ S Florida, Morsani Coll Med, Dept Mol Med, Tampa, FL 33620 USA
[4] Univ S Florida, Morsani Coll Med, Byrd Alzheimers Res Inst, Tampa, FL 33620 USA
[5] Russian Acad Sci, Pushchino Sci Ctr Biol Res, Fed Res Ctr, Lab New Methods Biol,Inst Biol Instrumentat, Pushchino 142290, Moscow Region, Russia
关键词
c-Jun N-terminal kinase (JNK) signaling pathway; Oxidative stress; Intrinsically disordered proteins; Intrinsically disordered protein regions; Molecular recognition features; Posttranslational modifications; Short linear Motifs; JIP1 SCAFFOLD PROTEIN; REGULATING KINASE 1; C-JUN; FAMILY PROTEINS; CRYSTAL-STRUCTURES; ASK1-MEDIATED APOPTOSIS; INTERACTING PROTEIN-1; HETEROMERIC COMPLEX; MAPK SCAFFOLD; CELL-DEATH;
D O I
10.1007/s00018-022-04230-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The c-Jun N-terminal kinase (JNK) signaling cascade is a mitogen-activated protein kinase (MAPK) signaling pathway that can be activated in response to a wide range of environmental stimuli. Based on the type, degree, and duration of the stimulus, the JNK signaling cascade dictates the fate of the cell by influencing gene expression through its substrate transcription factors. Oxidative stress is a result of a disturbance in the pro-oxidant/antioxidant homeostasis of the cell and is associated with a large number of diseases, such as neurodegenerative disorders, cancer, diabetes, cardiovascular diseases, and disorders of the immune system, where it activates the JNK signaling pathway. Among different biological roles ascribed to the intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are signaling hub functions, as intrinsic disorder allows proteins to undertake multiple interactions, each with a different consequence. In order to ensure precise signaling, the cellular abundance of IDPs is highly regulated, and mutations or changes in abundance of IDPs/IDPRs are often associated with disease. In this study, we have used a combination of six disorder predictors to evaluate the presence of intrinsic disorder in proteins of the oxidative stress-induced JNK signaling cascade, and as per our findings, none of the 18 proteins involved in this pathway are ordered. The highest level of intrinsic disorder was observed in the scaffold proteins, JIP1, JIP2, JIP3; dual specificity phosphatases, MKP5, MKP7; 14-3-3 zeta and transcription factor c-Jun. The MAP3Ks, MAP2Ks, MAPKs, TRAFs, and thioredoxin were the proteins that were predicted to be moderately disordered. Furthermore, to characterize the predicted IDPs/IDPRs in the proteins of the JNK signaling cascade, we identified the molecular recognition features (MoRFs), posttranslational modification (PTM) sites, and short linear motifs (SLiMs) associated with the disordered regions. These findings will serve as a foundation for experimental characterization of disordered regions in these proteins, which represents a crucial step for a better understanding of the roles of IDPRs in diseases associated with this important pathway.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling
    T Yabu
    H Shiba
    Y Shibasaki
    T Nakanishi
    S Imamura
    K Touhata
    M Yamashita
    Cell Death & Differentiation, 2015, 22 : 258 - 273
  • [42] Stress-induced ceramide generation and apoptosis via the phosphorylation and activation of nSMase1 by JNK signaling
    Yabu, T.
    Shiba, H.
    Shibasaki, Y.
    Nakanishi, T.
    Imamura, S.
    Touhata, K.
    Yamashita, M.
    CELL DEATH AND DIFFERENTIATION, 2015, 22 (02): : 258 - 273
  • [43] OXIDATIVE STRESS-INDUCED SULFENYLATION OF SIRT6 IS ASSOCIATED WITH ENHANCED NF-κB SIGNALING IN HUMAN CHONDROCYTES
    Collins, J. A.
    Diekman, B. O.
    DeFoor, M. T.
    Wood, S. T.
    Bolduc, J. A.
    Nelson, K. J.
    Chubinskaya, S.
    Poole, L. B.
    Furdui, C. M.
    Loeser, R. F.
    OSTEOARTHRITIS AND CARTILAGE, 2018, 26 : S44 - S44
  • [44] Intrinsic disorder in proteins associated with neurodegenerative diseases
    Uversky, Vladimir N.
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2009, 14 : 5188 - 5238
  • [45] The abundance of intrinsic disorder in proteins, associated with aging
    Manuylov, V.
    Nesterov, S.
    Dayhoff, G.
    Gordeliy, V.
    Ilyinsky, N.
    Uversky, V.
    FEBS OPEN BIO, 2021, 11 : 48 - 48
  • [46] Stress-induced proteins of Agrobacterium tumefaciens
    Rosen, R
    Büttner, K
    Schmid, R
    Hecker, M
    Ron, EZ
    FEMS MICROBIOLOGY ECOLOGY, 2001, 35 (03) : 277 - 285
  • [47] Adiponectin Mediates Cardioprotection in Oxidative Stress-Induced Cardiomyocyte Remodeling via AMPK Signaling
    Essick, Eric E.
    Ghobrial, Joanna
    Shimano, Masayuki
    Pimental, David R.
    Ouchi, Noriyuki
    Sam, Flora
    CIRCULATION, 2010, 122 (21)
  • [48] Selenium Effects on Oxidative Stress-Induced Calcium Signaling Pathways in Parkinson’s Disease
    Sanaz Salaramoli
    Hamidreza Joshaghani
    Seyed Isaac Hashemy
    Indian Journal of Clinical Biochemistry, 2022, 37 : 257 - 266
  • [49] N-Acetylcysteine Rescues Hippocampal Oxidative Stress-Induced Neuronal Injury via Suppression of p38/JNK Signaling in Depressed Rats
    Fan, Cuiqin
    Long, Yifei
    Wang, Liyan
    Liu, Xiaohang
    Liu, Zhicheng
    Lan, Tian
    Li, Ye
    Yu, Shu Yan
    FRONTIERS IN CELLULAR NEUROSCIENCE, 2020, 14
  • [50] Effect of Gelam Honey on the Oxidative Stress-Induced Signaling Pathways in Pancreatic Hamster Cells
    Batumalaie, Kalaivani
    Safi, Sher Zaman
    Yusof, Kamaruddin Mohd
    Ismail, Ikram Shah
    Sekaran, Shamala Devi
    Qvist, Rajes
    INTERNATIONAL JOURNAL OF ENDOCRINOLOGY, 2013, 2013