Design of UWB pulses based on B-splines

被引:5
|
作者
Matsuo, M [1 ]
Kamada, M [1 ]
Habuchi, H [1 ]
机构
[1] Ibaraki Univ, Grad Sch Sci & Engn, Hitachi, Ibaraki 3168511, Japan
关键词
D O I
10.1109/ISCAS.2005.1465863
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The present paper discusses construction of UWB pulses on the basis of B-splines having the following properties: (i) The B-splines are time-limited piecewise polynomials. (ii) They are rectangular pulses when their order is one and they converge to band-limited functions at the limit that their order tends to infinity. (iii) There are an analog circuit and a fast digital filter for the generation of B-splines. A constrained minimization technique is proposed for designing pulses so as to comfort the FCC spectral mask and satisfy basic requirements for UWB pulses.
引用
收藏
页码:5425 / 5428
页数:4
相关论文
共 50 条
  • [1] Design of UWB pulses in terms of B-splines
    Matsuo, M
    Kamada, M
    Habuchi, H
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2005, E88A (09) : 2287 - 2298
  • [2] Demodulation of UWB impulse radio signals using B-splines
    Huang, Beilei
    Lai, Edmund M-K.
    Vinod, A. P.
    2006 10TH IEEE SINGAPORE INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS, VOLS 1 AND 2, 2006, : 676 - +
  • [3] ωB-splines
    Mei’E Fang
    GuoZhao Wang
    Science in China Series F: Information Sciences, 2008, 51 : 1167 - 1176
  • [4] B-splines
    Gillies, Duncan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (02): : 237 - 242
  • [5] ωB-splines
    Fang Mei'E
    Wang GuoZhao
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2008, 51 (08): : 1167 - 1176
  • [6] ωB-splines
    FANG Mei’E1
    2 College of Computer
    Science China(Information Sciences), 2008, (08) : 1167 - 1176
  • [7] UWB Signal Processing: Projection, B-Splines, and Modified Gegenbauer Bases
    Casey, Stephen D.
    Cohl, Howard S.
    2015 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2015, : 11 - 15
  • [8] Complex B-splines
    Forster, B
    Blu, T
    Unser, M
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) : 261 - 282
  • [9] Quantum B-splines
    Plamen Simeonov
    Ron Goldman
    BIT Numerical Mathematics, 2013, 53 : 193 - 223
  • [10] Quantum B-splines
    Simeonov, Plamen
    Goldman, Ron
    BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 193 - 223