ωB-splines

被引:7
|
作者
Fang Mei'E [1 ,2 ,3 ]
Wang GuoZhao [1 ,2 ]
机构
[1] Zhejiang Univ, Inst Comp & Image Proc, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[3] Hangzhou Dianzi Univ, Coll Comp, Hangzhou 310018, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
omega B-splines; frequencies; B-splines; trigonometric polynomial B-splines; hyperbolic polynomial B-splines;
D O I
10.1007/s11432-008-0076-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new kind of spline with variable frequencies, called omega B-spline, is presented. It not only unifies B-splines, trigonometric and hyperbolic polynomial B-splines, but also produces more new types of splines. omega B-spline bases are defined in the space spanned by {cos omega t, sin omega t, 1, t, ..., t(n) , ...} with the sequence of frequencies omega, where n is an arbitrary nonnegative integer. omega B-splines persist all desirable properties of B-splines. Furthermore, they have some special properties advantageous for modeling free form curves and surfaces.
引用
收藏
页码:1167 / 1176
页数:10
相关论文
共 50 条
  • [1] ωB-splines
    Mei’E Fang
    GuoZhao Wang
    Science in China Series F: Information Sciences, 2008, 51 : 1167 - 1176
  • [2] B-splines
    Gillies, Duncan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (02): : 237 - 242
  • [3] ωB-splines
    FANG Mei’E1
    2 College of Computer
    Science China(Information Sciences), 2008, (08) : 1167 - 1176
  • [4] Complex B-splines
    Forster, B
    Blu, T
    Unser, M
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 20 (02) : 261 - 282
  • [5] Quantum B-splines
    Plamen Simeonov
    Ron Goldman
    BIT Numerical Mathematics, 2013, 53 : 193 - 223
  • [6] Quantum B-splines
    Simeonov, Plamen
    Goldman, Ron
    BIT NUMERICAL MATHEMATICS, 2013, 53 (01) : 193 - 223
  • [7] THEOREM ON B-SPLINES
    DOMSTA, J
    STUDIA MATHEMATICA, 1972, 41 (03) : 291 - &
  • [8] ON MULTIVARIATE B-SPLINES
    DAHMEN, W
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1980, 17 (02) : 179 - 191
  • [9] Hermitian B-splines
    Grisoni, L
    Blanc, C
    Schlick, C
    COMPUTER GRAPHICS FORUM, 1999, 18 (04) : 237 - 248
  • [10] Multiquadric B-splines
    Beatson, RK
    Dyn, N
    JOURNAL OF APPROXIMATION THEORY, 1996, 87 (01) : 1 - 24