ωB-splines

被引:7
|
作者
Fang Mei'E [1 ,2 ,3 ]
Wang GuoZhao [1 ,2 ]
机构
[1] Zhejiang Univ, Inst Comp & Image Proc, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[3] Hangzhou Dianzi Univ, Coll Comp, Hangzhou 310018, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
omega B-splines; frequencies; B-splines; trigonometric polynomial B-splines; hyperbolic polynomial B-splines;
D O I
10.1007/s11432-008-0076-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new kind of spline with variable frequencies, called omega B-spline, is presented. It not only unifies B-splines, trigonometric and hyperbolic polynomial B-splines, but also produces more new types of splines. omega B-spline bases are defined in the space spanned by {cos omega t, sin omega t, 1, t, ..., t(n) , ...} with the sequence of frequencies omega, where n is an arbitrary nonnegative integer. omega B-splines persist all desirable properties of B-splines. Furthermore, they have some special properties advantageous for modeling free form curves and surfaces.
引用
收藏
页码:1167 / 1176
页数:10
相关论文
共 50 条
  • [31] Interpolation with nonuniform B-splines
    Margolis, E
    Eldar, YC
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 577 - 580
  • [32] On the B-splines effective completeness
    Argenti, Luca
    Colle, Renato
    COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) : 1442 - 1447
  • [33] Interlacing property for B-splines
    Foucart, S
    JOURNAL OF APPROXIMATION THEORY, 2005, 135 (01) : 1 - 21
  • [34] Kernel B-splines and interpolation
    M. Bozzini
    L. Lenarduzzi
    R. Schaback
    Numerical Algorithms, 2006, 41 : 1 - 16
  • [35] Testing for additivity with B-splines
    Heng-jian CUI
    Department of Statistics
    National Institute of Statistical Science
    Science China Mathematics, 2007, (06) : 841 - 858
  • [36] On the condition of cubic B-splines
    Lyche, Tom
    Morken, Knut
    Reif, Ulrich
    JOURNAL OF APPROXIMATION THEORY, 2023, 289
  • [37] B-SPLINES FROM PARALLELEPIPEDS
    DEBOOR, C
    HOLLIG, K
    JOURNAL D ANALYSE MATHEMATIQUE, 1982, 42 : 99 - 115
  • [38] Lofting with Patchwork B-Splines
    Engleitner, Nora
    Juettler, Bert
    ADVANCED METHODS FOR GEOMETRIC MODELING AND NUMERICAL SIMULATION, 2019, 35 : 77 - 98
  • [39] Trivariate Biharmonic B-Splines
    Hou, Fei
    Qin, Hong
    Hao, Aimin
    COMPUTER GRAPHICS FORUM, 2015, 34 (06) : 36 - 47
  • [40] Non polynomial B-splines
    Laksa, Arne
    41ST INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'15), 2015, 1690