ACETYLENE ON TITAN'S SURFACE

被引:39
|
作者
Singh, S. [1 ,2 ]
McCord, T. B. [1 ]
Combe, J-Ph. [1 ]
Rodriguez, S. [3 ]
Cornet, T. [4 ]
Le Mouelic, S. [5 ]
Clark, R. N. [6 ]
Maltagliati, L. [3 ]
Chevrier, V. F. [2 ]
机构
[1] Bear Fight Inst, 22 Fiddlers Rd, Winthrop, WA 98862 USA
[2] Univ Arkansas, Arkansas Ctr Space & Planetary Sci, Fayetteville, AR 72701 USA
[3] Univ Paris Diderot, CEA Saclay, CNRS UMR 7158, Lab Astrophys Instrumentat & Modelisat AIM, F-91191 Gif Sur Yvette, France
[4] ESA, ESAC, POB 78, E-28691 Villanueva De La Caada, Madrid, Spain
[5] Univ Nantes, UMR CNRS 6112, Lab Planetol & Geodynam Nantes, 2 Rue Houssiniere BP92208, Nantes 3, France
[6] US Geol Survey, Denver Fed Ctr, Denver, CO 80225 USA
来源
ASTROPHYSICAL JOURNAL | 2016年 / 828卷 / 01期
关键词
planets and satellites: atmospheres; planets and satellites: composition; planets and satellites: detection; planets and satellites: surfaces; techniques: spectroscopic; HUYGENS LANDING SITE; COUPLING PHOTOCHEMISTRY; CHEMICAL-COMPOSITION; HAZE FORMATION; ATMOSPHERE; CASSINI/VIMS; SPECTRA; MODEL; HYDROCARBONS; DIACETYLENE;
D O I
10.3847/0004-637X/828/1/55
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Titan's atmosphere is opaque in the near-infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few "transparency windows." Thus, the composition of Titan's surface remains difficult to access from space and is still poorly constrained. Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescales. Acetylene (C2H2) net production in the atmosphere is predicted to be larger than any other compound and C2H2 has been speculated to exist on the surface of Titan. C2H2 was detected as a trace gas sublimated/evaporated from the surface using the Gas Chromatograph Mass Spectrometer after the landing of the Huygens probe. Here we show evidence of C2H2 on the surface of Titan by detecting absorption bands at 1.55 and 4.93 mu m using the Cassini Visual and Infrared Mapping Spectrometer at three different equatorial areas-Tui Regio, eastern Shangri La, and Fensal-Aztlan/Quivira. We found that C2H2 is preferentially detected in lowalbedo areas, such as sand dunes and near the Huygens landing site. The specific location of the v detections suggests that C2H2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/ evaporation processes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Experimental Characterization of the Pyridine:Acetylene Co-crystal and Implications for Titan's Surface
    Czaplinski, Ellen C.
    Vu, Tuan H.
    Cable, Morgan L.
    Choukroun, Mathieu
    Malaska, Michael J.
    Hodyss, Robert
    ACS EARTH AND SPACE CHEMISTRY, 2023, 7 (03): : 597 - 608
  • [2] ACETYLENE ON TITAN - REPLY
    LUNINE, JI
    STEVENSON, DJ
    YUNG, YL
    SCIENCE, 1984, 223 (4641) : 1131 - 1131
  • [3] Experimental determination of acetylene and ethylene solubility in liquid methane and ethane: Implications to Titan's surface
    Singh, S.
    Combe, J. -Ph.
    Cordier, D.
    Wagner, A.
    Chevrier, V. F.
    McMahon, Z.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2017, 208 : 86 - 101
  • [4] Titan's surface and atmosphere
    Hayes, Alexander G.
    Soderblom, Jason M.
    Adamkovics, Mate
    ICARUS, 2016, 270 : 1 - 1
  • [5] From Titan's tholins to Titan's aerosols: Isotopic study and chemical evolution at Titan's surface
    Nguyen, Mai-Julie
    Raulin, Francois
    Coll, Patrice
    Derenne, Sylvie
    Szopa, Cyril
    Cernogora, Guy
    Israel, Guy
    Bernard, Jean-Michel
    ADVANCES IN SPACE RESEARCH, 2008, 42 (01) : 48 - 53
  • [6] Uptake of acetylene on cosmic dust and production of benzene in Titan's atmosphere
    Frankland, Victoria L.
    James, Alexander D.
    Sanchez, Juan Diego Carrillo
    Mangan, Thomas P.
    Willacy, Karen
    Poppe, Andrew R.
    Plane, John M. C.
    ICARUS, 2016, 278 : 88 - 99
  • [7] TITAN'S SURFACE BRIGHTNESS TEMPERATURES
    Jennings, D. E.
    Flasar, F. M.
    Kunde, V. G.
    Samuelson, R. E.
    Pearl, J. C.
    Nixon, C. A.
    Carlson, R. C.
    Mamoutkine, A. A.
    Brasunas, J. C.
    Guandique, E.
    Achterberg, R. K.
    Bjoraker, G. L.
    Romani, P. N.
    Segura, M. E.
    Albright, S. A.
    Elliott, M. H.
    Tingley, J. S.
    Calcutt, S.
    Coustenis, A.
    Courtin, R.
    ASTROPHYSICAL JOURNAL LETTERS, 2009, 691 (02): : L103 - L105
  • [8] Titan's surface before Cassini
    Lorenz, RD
    Lunine, JI
    PLANETARY AND SPACE SCIENCE, 2005, 53 (05) : 557 - 576
  • [9] Titan's surface chemical evolution
    Lunine, Jonathan I.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [10] Cryovolcanic features on Titan's surface as revealed by the Cassini Titan Radar Mapper
    Lopes, R. M. C.
    Mitchell, K. L.
    Stofan, E. R.
    Lunine, J. I.
    Lorenz, R.
    Paganelli, F.
    Kirk, R. L.
    Wood, C. A.
    Wall, S. D.
    Robshaw, L. E.
    Fortes, A. D.
    Neish, C. D.
    Radebaugh, J.
    Reffet, E.
    Ostro, S. J.
    Elachi, C.
    Allison, M. D.
    Anderson, Y.
    Boehmer, R.
    Boubin, G.
    Callahan, P.
    Encrenaz, P.
    Flamini, E.
    Francescetti, G.
    Gim, Y.
    Hamilton, G.
    Hensley, S.
    Janssen, M. A.
    Johnson, W. T. K.
    Kelleher, K.
    Muhleman, D. O.
    Ori, G.
    Orosei, R.
    Picardi, G.
    Posa, F.
    Roth, L. E.
    Seu, R.
    Shaffer, S.
    Soderblom, L. A.
    Stiles, B.
    Vetrella, S.
    West, R. D.
    Wye, L.
    Zebker, H. A.
    ICARUS, 2007, 186 (02) : 395 - 412